PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical sensors based on TiO2–Fe2O3 coupled system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, transition metal oxides, which exhibit favorable catalytic abilities, have also been investigated as a material for the detection of hydrazine (N2H4). It has been reported that mixed metal oxides usually offer a higher electrochemical activity than binary oxides. In this work, a TiO2-Fe2O3 coupled system is presented as an enhanced material with major applications in electrochemical detectors. The electrochemical behavior of glassy carbon electrodes modified with TiO2-Fe2O3 in the absence and presence of hydrazine was evaluated via cyclic voltammetry (CV). Experimental results also suggest that the formation of the TiO2-Fe2O3 coupled system enhances electrochemical catalytic performance in N2H4 detection. The modificationTiO2+2 mol% Fe2O3 provides good analytical performance of detection (0.13 mM) and quantification limits (0.39 mM). The presented coupled system provides the premise for a suitable material for a stable and sensitive N2H4 sensor.
Słowa kluczowe
Rocznik
Strony
301--311
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., wzory
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • University of Applied Sciences in Tarnow, Faculty of Mathematical and Natural Sciences, ul. Mickiewicza 8, 33-100 Tarnów, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Zargar, B., Hatamie, A. (2013). A simple and fast colorimetric method for detection of hydrazine in water samples based on formation of gold nanoparticles as colorimetric probe. Sensors and Actuators B: Chemical, 182, 706-710.
  • [2] Kim, S.K., Jeong, Y.N., Ahmed, M.S., You, J.-M, Choi, H.C., Jeon, S. (2011). Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs-Pd nanoparticles. Sensors and Actuators B: Chemical, 153, 246-251.
  • [3] He, Y., Hang, W., Liang, Y., Yu, H. (2015). A low-cost and label-free assay for hydrazine using MnO2 nanosheets as colorimetric probes. Sensors and Actuators B: Chemical, 220, 927-931.
  • [4] Choudhary, G., Hansen, H. (1998). Human health perspective on environmental exposure to hydrazines: a review. Chemosphere, 37(5), 801-843.
  • [5] Kim, S.P., Choi, H.C. (2015). Reusable hydrazine amperometric sensor based on Nafion®-coated TiO2-carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 207, 424-429.
  • [6] Moghaddam, H.M., Beitollahi, H., Tajik, S., Sheikhshoaie, I., Biparva, P. (2015). Fabrication of oval TiO2 nanoparticles/Mn(III) salen doped carbon paste electrode: application as electrochemical sensor for determination of hydrazine in the presence of phenol. Environmental Monitoring and Assessment, 187(7).
  • [7] Kumar, A., Burns, J., Hoffmann, W., Demattio, H., Malik, A.K., Matysik, F.M. (2011). Determination of hydrazines by chip electrophoresis with contactless conductivity detection. Electrophoresis, 32(1), 920-925.
  • [8] Ganesh, S., Khan, F., Ahmed, M.K., Pandey. S.K. (2011). Potentiometric determination of free acidity in presence of hydrolysable ions and sequential determination of hydrazine. Talanta, 85(1), 958-963.
  • [9] George, M., Nagaraja, K.S., Balasubramanian, N. (2008). Spectrophotometric determination of hydrazine. Talanta, 75(1), 27-31.
  • [10] Safavi, A., Karimi, M.A. (2002). Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta, 58(3), 785-792.
  • [11] Gilbert, R., Rioux, R., Saheb, S.E. (1984). Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Analytical Chemistry, 56(1), 106-109.
  • [12] Mori, M., Tanaka, K., Xu, Q., Ikedo, M., Taoda, H., Hu, W. (2004). Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. Journal of Chromatography A, 1039(1-2), 135-139.
  • [13] Ahmad, R., Tripathy, N., Ahn, M.S., Hahn, Y.B. (2017). Highly stable hydrazine chemical sensor based on vertically-aligned ZnO nanorods grown n electrode. Journal of Colloid and Interface Science, 494, 153-158.
  • [14] Dong, Y., Yang, Z., Sheng, Q., Zheng, J. (2018). Solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor. Colloids and Surfaces A, 538, 371-377.
  • [15] Yang, Z., Sheng, Q., Zhang, S., Zheng, X., Zheng, J. (2017). One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Micromchim Acta, 184(7), 2219-2226.
  • [16] Yang, Y.J., Li, W., Wu, X. (2014). Copper sulfide reduced Graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium. Electrochimica Acta, 123, 260-267.
  • [17] Harraz, F.A., Ismail, A.A., Al-Sayari, S.A., Al-Hajry, A., Al-Assiri, M.S. (2016). Highly sensitive amperometric hydrazine sensor based on novel-Fe2O3/crosslinked nanocomposite modified glassycarbon electrode. Sensors and Actuators B: Chemical, 234, 573-582.
  • [18] Ameen, S., Akhtar, M.S., Shin, H.S. (2012). Hydrazine chemical sensing by modified electrod based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sensors and Actuators B: Chemical, 173, 177-183.
  • [19] Li, J., Xie, H., Chen, L. (2011). A sensitive hydrazine electrochemical sensor based on electrode position of gold nanoparticles on choline film modified glassy carbon electrode. Sensors and Actuators B: Chemical, 153, 239-245.
  • [20] Nassef, H.M., Radi, A.-E., O’Sullivan, C.K. (2006). Electrocatalytic oxidation of hydrazine atoaminophnol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. Journal of Electroanalytical Chemistry, 592(1), 139-146.
  • [21] Li, C., Li, M., Bo, X., Y, L., Mtukula, A.C., Guo, L. (2016). Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazineoxidation. Electrochim. Acta, 211, 255-264.
  • [22] Shykla, S, Chaudhary, S., Umar, A., Chaudhary, G.R., Mehta, S.K. (2014). Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. Sensors and Actuators B: Chemical, 196, 231-237.
  • [23] Zhang, J., Liu, H., Dou, M., Wang, F., Liu, J., Li, Z., Ji, J. (2015). Synthesis and characterization of Co3O4/multiwalled carbon nanotubes nanocomposite for amperometric sensing of hydrazine. Electroanalysis, 27(5), 1188-1194.
  • [24] Khan, S.B., Faisal, M., Rahman, M.M., Abdel-Latif, I.A., Ismail, A.A., Akhtar, K., Al-Hajry, A., Asiri, A.M., Alamry, K.A. (2013). Highly sensitive and stable phenyl hydrazine chemical sensors based on CuO flower shapes and hollow spheres. New Journal of Chemistry, 37(3), 1098-1104.
  • [25] Wang, G., Zhang, C., He X., Li, Z., Zhang, X., Wang, L., Fang, B. (2010). Detection of hydrazine based on Nano-Au deposited on Porous-TiO2 film. Electrochimica Acta, 55(24), 7204-7210.
  • [26] Ameen, S. Akhtar, M.S., Seo, H.-K., Shin, H.-S. (2013). TiO2 nanotube arrays via electrochemical anodic oxidation: Prospective electrode for sensing phenyl hydrazine. Applied Physics Letters, 103(06), 061602.
  • [27] Ojani, R., Safshekan, S., Raoof, J.-B. (2014). Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode; its application for detection of hydrazine. Journal of Solid State Electrochemistry, 18(2), 779-783.
  • [28] Yi, Q., Niu, F., Yu, W. (2011). Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 519(10), 3155-3161.
  • [29] Dong, B., He, B.-L., Huang, J., Gao, G.-Y., Yang, Z., Li, H.-L. (2008). High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. J. Power Sources, 175(1), 266-271.
  • [30] Yang, Z., Zheng, X., Zheng, J. (2017). MnCo2S4 nanoparticle-assembled hierarchical porous sphereas an effective electrocatalyst for highly sensitive and selective nonenzymatic detection of hydrazine. Sensors and Actuators B: Chemical, 253, 34-41.
  • [31] Kundu, T.K., Mukherjee, M., Chakravorty, D. (1998). Growth of nano-Fe2O3 in a titania matrix by the sol-gel route. Journal of Materials Science, 33(7), 1759-1763.
  • [32] MacChesney, J.B., Muan, A. (1959). Studies in the system iron oxide-titanium oxide. American Mineralogist: Journal of Earth and Planetary Materials, 44(9-10), 926-945.
  • [33] Abolhasani, J., Hosseini, H., Khanmiri, R.H. (2014). Electrochemical study and differential pulse voltammetric determination of oxcarbazepine and its main metabolite at a glassy carbon electrode. Analytical Methods, 6(2), 850-856.
  • [34] Ngamchuea, K., Eloul, S., Tschulik, K., Compton, R.G. (2014). Planar diffusion to macro disc electrodes what electrode size is required for the Cottrel and Randles-Sevcik equations to apply quantitatively? Journal of Solid State Electrochemistry, 18(12), 3251-3257.
  • [35] Tang, Y.Y., Kao, C.L., Chen, P.Y. (2012). Electrochemical detection of hydrazine using a highly sensitive nanoporous gold electrode. Analytica Chimica Acta, 711, 32-39.
  • [36] Rosca, V., Koper, M.T.M. (2008) Electrocatalytic oxidation of hydrazine on platinium electrodes inalkaline solutions. Electrochim. Acta, 53, 5199-5205.
  • [37] Sultana, W., Eraiah, B., Vasan, H. (2012). Efficient polyglycine modified Au electrode for the detection of hydrazine. Analytical Methods, 4(12), 4115-4120.
  • [38] Zhao, Z., Wang, Y., Li, P., Sang, S., Zhang, W., Hu, J., Lian, K. (2015). A highly sensitive electrochemical sensor based on Cu/Cu2O@carbon nanocomposite structures for hydrazine detection. Analytical Methods, 7(21), 9040-9046,
  • [39] Shrivastava, A., Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chronicles of Young Scientists, 2(1), 21-25.
Uwagi
EN
1. This work is was financed by the Polish Ministry of Science and Education – the subvention no. 16.160.557.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dcaa9d3-04cf-4d06-9d04-ed78e514ece2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.