Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a simulation study of the slowing optical signals in generalized Cantor structure is proposed. The materials constituting the structure’s layers are SiO2 and the TiO2. The slowing down factor is determined using the transfer matrix method whose purpose is to study the slowing of light. We show that the slowing down factor value depends on the generalized Cantor parameters (a, b and c) and the reference wavelength λ0. These parameters are optimized to better slowing the optical signals, minimize the number and the thickness of structure’s layers. At the end of the paper we compare our results with previous research work.
Czasopismo
Rocznik
Tom
Strony
65--73
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- College of Engineering, Industrial Engineering Department, Haïl University, Haïl City 2440, Saudi Arabia
- Photovoltaic and Semiconductor Materials Laboratory, El-Manar University-ENIT, PO Box 37, Le belvedere 1002-Tunis, Tunisia
autor
- College of Engineering, Industrial Engineering Department, Haïl University, Haïl City 2440, Saudi Arabia
- College of Engineering, Manufacturing and Materials Department, International Islamic University, Malaysia
autor
- Photovoltaic and Semiconductor Materials Laboratory, El-Manar University-ENIT, PO Box 37, Le belvedere 1002-Tunis, Tunisia
autor
- Photovoltaic and Semiconductor Materials Laboratory, El-Manar University-ENIT, PO Box 37, Le belvedere 1002-Tunis, Tunisia
Bibliografia
- [1] GISIN N., THEW R., Quantum communication, Nature Photonics 1(3), 2007, pp. 165–171.
- [2] TAO LI, GUO-JIAN YANG, FU-GUO DENG, Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities, Physical Review A 93(1), 2016, article ID 012302.
- [3] SAIF ISLAM M., LOGEESWARAN VJ, Nanoscale materials and devices for future communication networks, IEEE Communications Magazine 48(6), 2010, pp. 112–120.
- [4] TOSHIHIKO B., Slow light in photonic crystals, Nature Photonics 2(8), 2008, pp. 465–473.
- [5] BEN ALI N., KANZARI M., A broad slow frequencies band and high slowing down factor by using one -dimensional hybrid periodic/Fibonacci photonic crystals, IOP Conference Series: Materials Science and Engineering 13(1), 2010, article ID 012016.
- [6] WEN-KAI KUO, HSUEH-PING WENG, JYUN-JHENG HSU, HSIN HER YU, Photonic crystal-based sensors for detecting alcohol concentration, Applied Sciences 6(3), 2016, p. 67.
- [7] YI YU, HEUCK M., HAO HU, WEIQI XUE, PEUCHERET C., YAOHUI CHEN, OXENLØWE L.K., YVIND K., MØRK J., Fano resonance control in a photonic crystal structure and its application to ultrafast switching, Applied Physics Letters 105(6), 2014, article ID 061117.
- [8] BEN ALI N., JIHENE ZAGHDOUDI, KANZARI M., KUSZELEWICZ R., The slowing of light in one-dimensional hybrid periodic and non-periodic photonic crystals, Journal of Optics 12(4), 2010, article ID 045402.
- [9] VASCONCELOS M.S., MAURIZ P.W., ALBUQUERQUE E.L., Optical filters based in quasiperiodic photonic crystal, Microelectronics Journal 40(4–5), 2009, pp. 851–853.
- [10] BIANCALANA F., All-optical diode action with quasiperiodic photonic crystals, Journal of Applied Physics 104(9), 2008, article ID 093113.
- [11] ARAÚJO C.A.A., VASCONCELOS M.S., MAURIZ P.W., ALBUQUERQUE E.L., Omnidirectional band gaps in quasiperiodic photonic crystals in the THz region, Optical Materials 35(1), 2012, pp. 18–24.
- [12] YEH P., YARIV A., Optical Waves in Crystals, Wiley Series in Pure and Applied Optics, Wiley – Interscience, New York, 1984, p. 589.
- [13] TRABELSI Y., BENALI N., BOUAZZI Y., KANZARI M., Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue–Morse)/periodic structures, Photonic Sensors 3(3), 2013, pp. 246–255.
- [14] CHUNFANG OUYANG, ZHIQIANG XIONG, FANGYUAN ZHAO, BIQIN DONG, XINHUA HU, XIAOHAN LIU, JIAN ZI, Slow light with low group-velocity dispersion at the edge of photonic graphene, Physical Review A 84(1), 2011, 015801.
- [15] KANZARI M., BOUZIDI A., REZIG B., Interferential polychromatic filters, The European Physical Journal B 36(4), 2003, pp. 431–443.
- [16] OKAMOTO T., FUKUYAMA A., Light amplification from Cantor and asymmetric multilayer resonators, Optics Express 13(20), 2005, pp. 8122–8127.
- [17] SAHEL S., AMRI R., BOUAZIZ L., GAMRA D., LEJEUNE M., BENLAHSEN M., ZELLAMA K., BOUCHRIHA H., Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2, Superlattices and Microstructures 97, 2016, pp. 429–438.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dc39488-61c9-4822-b766-d8a118dc4dad