PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a machine learning-based design optimization method for crashworthiness analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article investigates design optimisation in the automotive field using machine learning (ML). A thin-walled crash box under axial impact is studied and the design parameters are optimised for front-impact crash tests. This study is based on geometrically and physically nonlinear shell theory, finite element analysis (FEA), dynamic buckling analysis and design optimisation using ML. An artificial neural network framework consisting of various ML methods is developed. A generative adversarial network is established for data generation and reinforcement learning is implemented to automate exploration of the design parameter. This ML framework is proven to determine optimal parameters under predefined crashworthiness constraints.
Rocznik
Strony
61--92
Opis fizyczny
Bibliogr. 91 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
autor
  • Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
autor
  • Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
Bibliografia
  • 1. Destatis, Accidents registered by the police by type of damage/location, 2023, Database access in March, 2023.
  • 2. A. Blackburn, Road safety in the UNECE region, July 2022, Database access in April, 2023.
  • 3. S. Yadav, S.K. Pradhan, Investigations into dynamic response of automobile components during crash simulation, Procedia Engineering, 97, 1254–1264, 2014, 12th Global Congress on Manufacturing and Management, GCMM, 2014.
  • 4. F. Duddeck, E. Wehrle, Recent advances on surrogate modeling for robustness assessment of structures with respect to crashworthiness requirements, 10th European LS-DYNA Conference, 06, 2015.
  • 5. S. Zhang, P. Zhu, W. Chen, Crashworthiness-based lightweight design problem via new robust design method considering two sources of uncertainties, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227, 7, 1381–1391, 2013.
  • 6. T. Valayil, J.Ch. Isaack, Crash simulation in ANSYS LS-DYNA to explore the crash performance of composite and metallic materials, International Journal of Scientific and Engineering Research, 4, 8, 2013.
  • 7. P. Zhu, F. Pan, W. Chen, S. Zhang, Use of support vector regression in structural optimization: Application to vehicle crashworthiness design, Mathematics and Computers in Simulation, 86, 21–31, 2012, The 7th International Symposium on Neural Networks + The Conference on Modelling and Optimization of Structures, Processes and Systems.
  • 8. M. Rayamajhi, S. Hunkeler, F. Duddeck, Efficient robust shape optimization for crashworthiness, 10th World Congress on Structure and Multidisciplinary Optimization, 05, 2013.
  • 9. J. Forsberg, L. Nilsson, Evaluation of response surface methodologies used in crashworthiness optimization, International Journal of Impact Engineering, 32, 5, 759–777, 2006, International Symposium on the Crashworthiness of Light-weight Automotive Structures.
  • 10. L. Morello, L. Rosti Rossini, G. Pia, A. Tonoli, The Automotive Body Volume II: System Design, 1st ed., Mechanical Engineering Series, Springer, Dordrecht, 2011.
  • 11. G. Lu, T. Yu, 1 – Introduction, in: Energy Absorption of Structures and Materials, G. Lu, T. Yu [eds.], Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing, 2003, pp. 1–24.
  • 12. M. Kuehn, T. Hummel, J. Bende, Small-overlap frontal impacts involving passenger cars in Germany, 23rd Enhanced Safety of Vehicles Conference, 05, 2013, pp. 1495–1504.
  • 13. N.S.B. Yusof, S.M. Sapuan, M.T.H. Sultan, M. Jawaid, M.A. Maleque, Design and materials development of automotive crash box: A review, Ciência & Tecnologia dos Materiais, 29, 3, 129–144, 2017.
  • 14. J. M. Alexander, An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, 13, 1, 10–15, 1960.
  • 15. M. Altin, S. Halis, H. Yücesu, Investigation of the effect of corrugated structure on crashing performance in thin-walled circular tubes, International Journal of Automatic Science and Technology, 1, 12, 1–7, 2017.
  • 16. D. Karagiozova, M. Alves, Transition from progressive buckling to global bending of circular shells under axial impact – Part I: Experimental and numerical observations, International Journal of Solids and Structures, 41, 5, 1565–1580, 2004.
  • 17. W. Abramowicz, N. Jones, Dynamic axial crushing of square tubes, International Journal of Impact Engineering, 2, 2, 179–208, 1984.
  • 18. W. Chen, T. Wierzbicki, S. Santosa, Bending collapse of thin-walled beams with ultralight filler: Numerical simulation and weight optimization, Acta Mechanica, 153, 183–206, 2002.
  • 19. D.C. Han, S.H. Park, Collapse behavior of square thin-walled columns subjected to oblique loads, Thin-Walled Structures, 35, 3, 167–184, 1999.
  • 20. C. Qi, S. Yang, F. Dong, Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures, 59, 103–119, 2012.
  • 21. X. Zhang, G. Cheng, Z. You, H. Zhang, Energy absorption of axially compressed thin-walled square tubes with patterns, Thin-Walled Structures, 45, 9, 737–746, 2007.
  • 22. J. Wang, Y. Zhang, N. He, C.H. Wang, Crashworthiness behavior of Koch fractal structures, Materials & Design, 144, 229–244, 2018.
  • 23. N. Tanlak, F.O. Sonmez, Optimal shape design of thin-walled tubes under high-velocity axial impact loads, Thin-Walled Structures, 84, 302–312, 2014.
  • 24. H. Ghasemnejad, H. Hadavinia, D. Marchant, A. Aboutorabi, Energy absorption of thin-walled corrugated crash box in axial crushing, SDHM Structural Durability and Health Monitoring, 4, 1, 29–46, 2008.
  • 25. F. Djamaluddin, Review: Deformation and optimisation crashworthiness method for foam filled structures, Latin American Journal of Solids and Structures, 16, 7, e213, 2019.
  • 26. B. Jafarian, M.J. Rezvani, An experimental investigation on energy absorption of thinwalled bitubal structures by inversion and axial collapse, International Journal of Mechanical Sciences, 126, 270–280, 2017.
  • 27. J. Song, Numerical simulation on windowed tubes subjected to oblique impact loading and a new method for the design of obliquely loaded tubes, International Journal of Impact Engineering, 54, 192–205, 2013.
  • 28. S.W. Astuti, W.A. Wirawan, A. Zulkarnain, D.T. Istiantara, Comparison of energy absorption and pattern of deformation material crash box of three segments with bilinear and Johnson Cook approach, Journal of Physics: Conference Series, 1273, 1, 012078, 2019.
  • 29. N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial impact loading, Procedia Engineering, 173, 1390–1398, 2017, Plasticity and Impact Mechanics.
  • 30. C.N. Nguyen, T. Dirgantara, L. Gunawan, I. Putra, H. Ly, Analytical prediction of square crash box structure with holes due to impact loading, Regional Conference on Mechanical and Aerospace Technology, 11, 2013.
  • 31. X.W. Zhang, H. Su, T.X. Yu, Energy absorption of an axially crushed square tube with a buckling initiator, International Journal of Impact Engineering, 36, 3, 402–417, 2009.
  • 32. M. Bambach, L. Conrads, M. Daamen, O. Güvenç, G. Hirt, Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment, Materials & Design, 110, 157–168, 2016.
  • 33. A. Quadfasel, M. Teller, M. Madivala, C. Haase, F. Roters, G. Hirt, Computer-aided material design for crash boxes made of high manganese steels, Metals, 9, 7, 2019.
  • 34. A. Djerrad, F. Fan, X. Zhi, Q. Wu, Experimental and FEM analysis of AFRP strengthened short and long steel tube under axial compression, Thin-Walled Structures, 139, 9–23, 2019.
  • 35. M. Engul, F. Oz, N. Ersoy, Experimental and numerical investigation of the crushing process of composite crash box, 21th International Conference on Composite Materials, 08, 2017.
  • 36. N.A.Z. Abdullah, M.S.M. Sani, M.S. Salwani, N.A. Husain, A review on crashworthiness studies of crash box structure, Thin-Walled Structures, 153, 106795, 2020.
  • 37. W. Abramowicz, N. Jones, Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically, International Journal of Impact Engineering, 19, 5, 415–437, 1997.
  • 38. N. Jones, Several phenomena in structural impact and structural crashworthiness, European Journal of Mechanics – A/Solids, 22, 5, 693–707, 2003, General and Plenary Lectures from the 5th EUROMECH Solid Mechanics Conference.
  • 39. S.B. Tandale, M. Stoffel, Spiking recurrent neural networks for neuromorphic computing in nonlinear structural mechanics, Computer Methods in Applied Mechanics and Engineering, 412, 116095, 2023.
  • 40. R. Gulakala, B. Markert, M. Stoffel, Graph neural network enhanced finite element modelling, Proceedings in Applied Mathematics and Mechanics, 22, 1, e202200306, 2023.
  • 41. R. Gulakala, B. Markert, M. Stoffel, Generative adversarial network based data augmentation for CNN based detection of Covid-19, Scientific Reports, 12, 11, 19186, 2022.
  • 42. R. Gulakala, B. Markert, M. Stoffel, Rapid diagnosis of Covid-19 infections by a progressively growing GAN and CNN optimisation, Computer Methods and Programs in Biomedicine, 229, 107262, 2023.
  • 43. M. Stoffel, D. Weichert, R. Müller-Rath, Modeling of articular cartilage replacement materials, Archives of Mechanics, 61, 1, 69–87, 2009.
  • 44. C. Gamez, B. Schneider-Wald, A. Schuette, M. Mack, L. Hauk, A. ul Maula Khan, N. Gretz, M. Stoffel, K. Bieback, M.L. Schwarz, Bioreactor for mobilization of mesenchymal stem/stromal cells into scaffolds under mechanical stimulation: Rreliminary results, PLOS ONE, 15, 1, e0227553, 2020.
  • 45. M. Stoffel, F. Bamer, B. Markert, Artificial neural networks and intelligent finite elements in non-linear structural mechanics, Thin-Walled Structures, 131, 102–106, 2018.
  • 46. M. Stoffel, T.D. Vu, R. Schmidt, D. Weichert, A comparative study of deformations of elastic-viscoplastic plates using different structural hypotheses, Proceedings in Applied Mathematics and Mechanics, 12, 1, 185–186, 2012.
  • 47. C. Czech, M. Lesjak, C. Bach, F. Duddeck, Data-driven models for crashworthiness optimisation: Intrusive and non-intrusive model order reduction techniques, Structural and Multidisciplinary Optimization, 65, 190, 2022.
  • 48. S. Dong, T. Jing, J. Zhang, A few-shot learning-based crashworthiness analysis and optimization for multi-cell structure of high-speed train, Machines, 10, 8, 696, 2022.
  • 49. Z. Fang, K. Roy, Y. Dai, J.B.P. Lim, Effect of web perforations on end-two-flange web crippling behaviour of roll-formed aluminium alloy unlipped channels through experimental test, numerical simulation and deep learning, Thin-Walled Structures, 179, 109489, 2022.
  • 50. B. Bohn, J. Garcke, R. Iza-Teran, A. Paprotny, B. Peherstorfer, U. Schepsmeier, C.-A. Thole, Analysis of car crash simulation data with nonlinear machine learning methods, Procedia Computer Science, 18, 621–630, 2013, 2013 International Conference on Computational Science.
  • 51. Y. Gao, X. Liu, H. Huang, J. Xiang, A hybrid of fem simulations and generative adversarial networks to classify faults in rotor-bearing systems, ISA Transactions, 108, 356–366, 2021.
  • 52. Z. Nie, T. Lin, H. Jiang, L.B. Kara, TopologyGAN: Topology optimization using generative adversarial networks based on physical fields over the initial domain, Journal of Mechanical Design, 143, 3, 031715, 2021.
  • 53. Z. Wang, S. Rosa, L. Xie, B. Yang, S. Wang, N. Trigoni, A. Markham, Defonet: Learning body deformation using generative adversarial networks, ArXiv: Computer Science, Robotics, 2440–2447, 2018.
  • 54. J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey, The International Journal of Robotics Research, 32, 11, 1238–1274, 2013.
  • 55. M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert, E. Yoneki, Lift: Reinforcement learning in computer systems by learning from demonstrations, arXiv: abs/1808.07903, 2018.
  • 56. V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement learning, Nature, 518, 529–533, 2015.
  • 57. D.C. Han, S.H. Park, Collapse behavior of square thin-walled columns subjected to oblique loads, Thin-Walled Structures, 35, 3, 167–184, 1999.
  • 58. R.J. Hayduk, T. Wierzbicki, Extensional collapse modes of structural members, Computers & Structures, 18, 3, 447–458, 1984.
  • 59. T. Wierzbicki, W. Abramowicz, On the crushing mechanics of thin-walled structures, Journal of Applied Mechanics, 50, 4a, 727–734, 1983.
  • 60. W. Abramowicz, T. Wierzbicki, A kinematic approach to crushing of shell structures, [in:] 3rd International Conference on Vehicle Structural Mechanics (1979), SAE International, 1979.
  • 61. W. Abramowicz, N. Jones, Dynamic progressive buckling of circular and square tubes, International Journal of Impact Engineering, 4, 243–270, 1986.
  • 62. Ø. Jensen, M. Langseth, O. Hopperstad, Transition between progressive and global buckling of aluminium extrusions, Conference on Structures under Shock and Impact, VII, pp, 269–277, 2002.
  • 63. D. Karagiozova, N. Jones, Dynamic elastic-plastic buckling of circular cylindrical shells under axial impact, International Journal of Solids and Structures, 37, 14, 2005–2034, 2000.
  • 64. D. Karagiozova, N. Jones, Dynamic buckling of elastic-plastic square tubes under axial impact – Part II: Structural response, International Journal of Impact Engineering, 30, 2, 167–192, 2004.
  • 65. S. Gao, H. Tan, Study of dynamic plastic buckling of cylindrical shell impacted by sudden constant load, Technische Mechanik – European Journal of Engineering Mechanics, 12, 4, 209–211, 2019.
  • 66. T. Alexander, The relationship between the buckling load factor and the fundamental frequency of a structure, Structure Congress 2005, pp. 1–17, 04, 2005.
  • 67. J.W. Hutchinson, W.T. Koiter, Postbuckling theory, Applied Mechanics Review, 23, 12, 1353–1366, 1970.
  • 68. N. Jones, Structural Impact, 2nd ed., Cambridge University Press, Cambridge, 2011.
  • 69. J. Arbocz, Post-buckling Behaviour of Structures Numerical Techniques for More Complicated Structures, Springer, Berlin, Heidelberg, pp. 83–142, 1987.
  • 70. H. Schmidt, Stability of steel shell structures: General report, Journal of Constructional Steel Research, 55, 1, 159–181, 2000.
  • 71. Dassault Systemes, Buckling of a simply supported square plate, 2023, Access in February, 2023.
  • 72. Y. Dai, K. Roy, Z. Fang, B. Chen, G.M. Raftery, J.B.P. Lim, A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes, Journal of Building Engineering, 53, 104592, 2022.
  • 73. M. Stoffel, Methode experimentale pour la validation de modeles mecaniques, PhD Thesis, Aachen, 2007.
  • 74. M. Stoffel, R. Schmidt, D. Weichert, Shock wave-loaded plates, International Journal of Solids and Structures, 38, 42, 7659–7680, 2001.
  • 75. M. Smith, ABAQUS/Standard User’s Manual, Version 6.9, Dassault Systèmes Simulia Corp, United States, 2009.
  • 76. ASM aerospace specification metals Inc, Aluminum 6063-t5, 2023, Database access in March, 2023.
  • 77. N.S. Ha, G. Lu, Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics, Thin-Walled Structures, 157, 106995, 2020.
  • 78. A. Baroutaji, M. Sajjia, A.-G. Olabi, On the crashworthiness performance of thinwalled energy absorbers: Recent advances and future developments, Thin-Walled Structures, 118, 137–163, 2017.
  • 79. J. Lim, C. You, I. Dayyani, Multi-objective topology optimization and structural analysis of periodic spaceframe structures, Materials & Design, 190, 108552, 2020.
  • 80. R. Gulakala, B. Markert, M. Stoffel, Generative learning-based model for the prediction of 2D stress distribution, Proceedings in Applied Mathematics and Mechanics, 23, 4, e202300201, 2023.
  • 81. The pandas development team, pandas-dev/pandas: Pandas, February, 2020.
  • 82. M.L. Waskom, Seaborn: Statistical data visualization, Journal of Open Source Software, 6, 60, 3021, 2021.
  • 83. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.
  • 84. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: 1412.6980, 2017.
  • 85. G. Brockman, V. Cheung, L.Pettersson, J. Schneider, J.Schulman, J. Tang, W. Zaremba, OpenAI gym, arXiv: 1606.01540, 2016.
  • 86. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.
  • 87. OpenAI, Josh Achiam, Part 1: Key concepts in RL, 2024, OpenAI spinning up documentation access in Jan, 2024.
  • 88. R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning, 8, 229–256, 2004.
  • 89. S. Chandrasekar, Training using reinforce for mujoco, 2022, Documentation accessed in March, 2023.
  • 90. C. Watkins, P. Dayan, Technical note: Q-learning, Machine Learning, 8, 279–292, 1992.
  • 91. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, CoRR, arXiv: abs/1707.06347, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dc1bb35-0073-4e77-b92e-22102a7c2971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.