PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of ultrasonic disintegration process conditions on the physicochemical characteristics of excess sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania wpływu warunków prowadzenia procesu dezintegracji ultradźwiękowej na zmiany charakterystyki fizykochemicznej osadów nadmiernych
Języki publikacji
EN
Abstrakty
EN
Ultrasonic disintegration, as a method of sludge pre-treatment (before the stabilization process), causes changes in their physicochemical characteristics. The aim of this study was to determine the influence of ultrasonic disintegration conditions (sonication) on the changes in the physicochemical characteristics of sonicated sludge, i.e. an increase in the content of organic substances in the supernatant, sludge dewaterability and flocs structure. Thickened and non-thickened excess sludge from the municipal wastewater treatment plant in Gliwice was disintegrated. The process was conducted, using a high-power disintegrator equipped with a lenticular horn. In order to determine the most favorable conditions, the sewage sludge was sonicated at a wave frequency of f=25 kHz (as a function of time), with a different samples volume (V1=0.5 and V2=1 L) and emitter position of 1 and the 2.5 cm from the bottom of the chamber in which the process was conducted. The disintegration of sewage sludge was carried out with a specifi c energy density (EV) in the range from 10 to 30 kWh/m3. The evaluation of the disintegration effects was based on changes in the physicochemical characteristics of the sludge and/or supernatant at the end of the process, expressed by commonly used and author’s disintegration indicators. The best results were obtained for the sludge disintegrated with a volume of V2=1 L and the emitter position of 2.5 cm from the bottom of the chamber. The study confi rms that in various operating conditions of ultrasonic disintegration, there is a possibility for obtaining different effects which may influence the course of anaerobic stabilization and quality of the final products of the process.
PL
Dezintegracja ultradźwiękowa jako metoda wstępnej obróbki osadów ściekowych przed procesem stabilizacji, powoduje zmiany charakterystyki fizykochemicznej osadów ściekowych. Celem przeprowadzonych badań było określenie wpływu warunków prowadzenia dezintegracji ultradźwiękowej na zmiany charakterystyki fizykochemicznej nadźwiękawianych osadów, mianowicie: wzrost zawartości substancji organicznych w cieczy osadowej, podatność osadów na odwadnianie oraz stopień rozdrobnienia fazy stałej osadów (strukturę kłaczków osadu). Nadźwiękawianiu poddawano osady nadmierne niezagęszczone i zagęszczone, pochodzące z komunalnej oczyszczalni ścieków w Gliwicach. Proces prowadzono przy użyciu dezintegratora o wysokiej mocy, wyposażonego w głowicę soczewkową. W celu określenia najkorzystniejszych warunków prowadzenia procesu osady ściekowe poddawano nadźwiękawianiu falą o częstotliwości f=25 kHz w funkcji czasu, przy zmiennej geometrii w obszarze nadźwiękawiania (odległości emitera od dna komory, w którym nadźwiękawiano osady) i różnej objętości prób tj. V1=0,5 i V2=1 L, przy położeniu emitera kolejno 1 i 2,5 cm od dna naczynia, w którym nadźwiękawiano osady. Dezintegrację osadów prowadzono w określonym zakresie gęstości energii (EV), tj. od 10 do 30 kWh/m3. Oceny efektów dezintegracji dokonano w oparciu o zmiany charakterystyki fi zykochemicznej badanych osadów i/lub cieczy osadowych po zakończeniu procesu, wyrażonych przy pomocy powszechnie stosowanych oraz własnych wskaźników efektów dezintegracji. Najlepsze efekty dezintegracji uzyskano dla osadów o objętości V2=1 L i położeniu emitera w odległości 2,5 cm od dna naczynia, w którym prowadzono proces. Przeprowadzone badania potwierdzają, iż w różnych warunkach prowadzenia dezintegracji ultradźwiękowej osadów nadmiernych można uzyskać odmienne jego efekty, co może wpływać na przebieg stabilizacji beztlenowej osadów oraz jakość produktów końcowych tego procesu.
Rocznik
Strony
19--26
Opis fizyczny
Bibliogr. 39 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Poland Faculty of Energy and Environmental Engineering Institute of Water and Wastewater Engineering
autor
  • Silesian University of Technology, Poland Faculty of Energy and Environmental Engineering Institute of Water and Wastewater Engineering
Bibliografia
  • [1]. Bień, J., Stępniak, L. & Wolny, L. (1995). Ultrasound in water disinfection and preparation of sewage sludge before dewatering, Monograph 37, Publisher Technical University of Częstochowa. (in Polish)
  • [2]. Bień, J. & Szparkowska, I. (2005). Effect of excess sludge conditioning on the concentration of volatile fatty acids in anaerobic stabilization process, Gaz, Woda i Technika Sanitarna, 7–8, pp. 39–46. (in Polish)
  • [3]. Bougrier, C., Carrère, H. & Delgenès, J.P. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment, Chemical Engineering Journal, 106, 2, pp. 163–169.
  • [4]. Chen, Y.G., Yang, H.Z. & Gu, G.W. (2001). Effect of acid and surfactant treatment on activated sludge dewatering and settling, Water Research, 35, pp. 2615–2620.
  • [5]. Chu, C.P., Chang, B.V., Liao, G.S., Jean, D.S. & Lee, D.J. (2001). Observations on changes in ultrasonically treated waste-activated sludge, Water Research, 35, pp. 1038–1046.
  • [6]. Dewil, R., Baeyens, J. & Goutvrind, R. (2006). Ultrasonic treatment of waste activated sludge, Environmental Progress, 25, 2, pp. 121–128.
  • [7]. Farooq, R., Rehman, F., Baig, S., Sadique, M., Khan, S., Farooq, U., Rehman, A., Farooq, A., Pervez, A., Mukhtar-ul-Hassan & Shaukat S.F. (2009). The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge, World Applied Sciences Journal, 6, 2, pp. 234–237.
  • [8]. Feng, X., Lei, H.Y., Deng, J.C., Yo, Q. & Li, H.L. (2009). Physical and chemical characteristics of waste activated sludge treated ultrasonically, Chemical Engineering and Processing, 48, 1, pp. 187–194.
  • [9]. Fukas-Płonka, Ł. & Janik, M. (2006). Fermentation of excess sewage sludge, EkoTechnika, 1, pp. 52–56. (in Polish)
  • [10]. Giemza, M. (2013). Ultrasonic disintegration of the sewage treatment plant. The effects of ultrasonic disintegration in practice on several examples of sewage treatment plant, Technologia Wody, 11, pp. 31–35. (in Polish)
  • [11]. Gogate, P.R., Tatake, P.A., Kanthale, P.M. & Pandit, A.B. (2002). Mapping of sonochemical reactors: review, analysis and experimental verification, AIChE Journal, 48, pp. 1542–1560.
  • [12]. Grönroos, A., Kyllönen, H., Korpijärvi, K., Pirkonen, P., Paavola, T., Jokela, J. & Rintala, J. (2005). Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion, Ultrasonics Sonochemistry, 12, 1–2, pp. 115–120.
  • [13]. Jiang, J., Yang, S., Chen, M. & Zhang, Q. (2009). Disintegration of sewage sludge with bifrequency ultrasonic treatment, Water Science & Technology, 60, 6, pp. 1445–1453.
  • [14]. Khanal, S.K., Isik, H., Sung, S. & Avan Leeuwen, J. (2006). Ultrasonic conditioning of waste activated sludge for enhanced aerobic digestion, in: Proceedings of IWA Specialized Conference-Sustainable Sludge Management: State of the Art, Challenges and Perspectives, May 29–31, Moscow, Russia 2006.
  • [15]. Kopp, J., Dichtl, N., Müller, J. & Schwedes, J. (1997). Anaerobic digestion and dewatering characteristics of mechanical disintegrated excess sludge, International Specialized Conference on Sludge Management “Wastewater Sludge-Waste of Resource”, Politechnika Częstochowska, 2, pp. 231–238.
  • [16]. Müller, J. (1996). Mechanical sludge disintegration, Disseration, Shaker-Verlag, Aachen 1996. (in German)
  • [17]. Müller, J., Lehne, G., Schwedes, J., Battenberg, S., Naveke, R., Kopp, J., Dichtl, N., Scheminski, A., Krull, R. & Hempel, D.C. (1998). Disintegration of sewage sludge and influence on anaerobic digestion, Water Science & Technology, 38, 8–9, pp. 425–433.
  • [18]. Neis, U., Nickel, K. & Tiehm, A. (2000). Enhancement of anaerobic sludge digestion by ultrasonic disintegration, Water Science & Technology, 42, 9, pp. 73–80.
  • [19]. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R.J., Tyagi, R.D. & Surampalli, R.Y. (2011). Ultrasonic pretratment of sludge: A review, Ultrasonics Sonochemistry, 18, pp. 1–18.
  • [20]. Podedworna, J. & Umiejewska, K. (2008). Sewage sludge technology, Publishing House of Warsaw University of Technology, pp. 114–115. (in Polish).
  • [21]. Portenlänger, G. (1999). Mechanical and radical effects of ultrasound, in: Ultrasound in Environmental Engineering, Tiehm, A. & Neis, U. (Eds.), TU Hamburg – Harburg Reports on Sanitary Engineering, 25, pp. 139–151.
  • [22]. Rai, C.L., Struenkmann, G., Mueller, J. & Rao, P.G. (2004). Influence of ultrasonic disintegration on sludge growth and its estimation by respirometry, Environmental Science & Technology, 38, 21, pp. 5779–5785.
  • [23]. Show, K.Y., Mao, T. & Lee, D.J. (2007). Optimization of sludge disruption by sonication. Water Research, 41, pp. 4741–4747.
  • [24]. Śliwiński, A. (2001). Ultrasound and their application, WNT, Warszawa 2001. (in Polish)
  • [25]. Tabatabaie, F. & Mortazavi, A. (2008). Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk, World Applied Sciences Journal, 3, 1, pp. 119–121.
  • [26]. Tomczak-Wandzel, R., Mądrzycka, K. & Cimochowicz-Rybicka, M. (2009). Influence of ultrasonic disintegration on the methane fermentation process. Eds.: Ozonek, J., Pawłowska, M., Monographs Committee of the Polish Academy of Sciences, Environmental Engineering, 1, 58, pp. 331–337, Lublin 2009. (in Polish)
  • [27]. Tomczak-Wandzel, R., Ofverstrom, S., Dauknys, R. & Mądrzycka, K. (2011). Effect of disintegration pretreatment of sewage sludge for enhanced anaerobic digestion, Environmental Engineering, The 8th International Conference May 19–20, 2011, Vilnius, Lithuania Selected papers, pp. 679–683.
  • [28]. Tiehm, A., Nickel, K. & Neis, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge, Water Science and Technology, 36, 11, pp. 121–128.
  • [29]. Tiehm, A., Nickel, K., Zellhorn, M. & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water Research, 35, 8, pp. 2003–2009.
  • [30]. Tytła, M., Gnida, A. & Zielewicz, E. (2013). Changes of excess sewage sludge characteristics in the process of ultrasonic disintegration, Gaz, Woda i Technika Sanitarna 8, pp. 331–336. (in Polish)
  • [31]. Wang, F., Ji, M. & Lu, S. (2006). Influence of ultrasonic disintegration on the dewaterability of waste activated sludge, Environmental Progress, 25, 3, pp. 257–260.
  • [32]. Zawieja, I. & Wolny, L. (2011). Effect of Sonicator Power on the Biodegradability of Sewage Sludge, Rocznik Ochrona Środowiska, 13, pp. 1719–1731. (in Polish).
  • [33]. Zawieja, I., Wolny, L. & Włodarczyk, E. (2013). From sludge to biogas, Chemia Przemysłowa, 5, pp. 38–42. (in Polish).
  • [34]. Zhang, G., Zhang, P., Yang, J. & Chen, Y. (2007). Ultrasonic reduction of excess sludge from the activated sludge system, Journal of Hazardous Materials, 145, 3, pp. 515–519.
  • [35]. Zhang, G., Zhang, P., Yang, J. & Liu, H. (2008). Energy-efficient sludge sonication: Power and sludge characteristics, Bioresource Technology, 99, pp. 9029–9031.
  • [36]. Zielewicz, E. (2007). Ultrasonic disintegration of excess sewage sludge in obtaining volatile fatty acids, Scientific Papers of Silesian University of Technology, Paper 58, Gliwice 2007. (in Polish)
  • [37]. Zielewicz, E. (2010). Ultrasonic support of excess sludge hydrolysis, Przegląd Komunalny, 12, pp. 74–77. (in Polish)
  • [38]. Regulation of the Minister of Economy of 8th January 2013, concerning the criteria and procedures for admission for the storage of waste in a different type of landfill (Journal of Laws No. 0, item. 38). (in Polish)
  • [39]. National Waste Management Plan 2010, Resolution of the Ministers Council, of a day 29th December 2006, concerning the “National Waste Management Plan 2010”, Polish Monitor 2006 No. 90, item. 946. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dc09431-0e2f-46dc-840d-cb382f8b39cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.