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Abstract: 
The aim of the article is to analyze the impact of effective time management on the performance of workstations 
in the context of the conflict between maximizing workstation utilization and minimizing the number of items 
waiting in the queue. The article utilized the FlexSim program to build a simulation model of the workstation and 
conducted optimization using the built-in optimizer. The research demonstrated that effective time management 
has a positive impact on workstation performance by reducing the number of items waiting in the queue, leading 
to increased throughput and reduced delays in production processes. An important aspect of the analysis was the 
application of a multi-criteria optimization approach, which allowed for achieving a balance between maximizing 
workstation utilization and minimizing the number of items waiting. Multi-criteria optimization considers diverse 
goals and decision criteria, leading to a more comprehensive approach to optimizing production processes. As a 
result, effective time management on workstations, based on analysis and multi-criteria optimization, can signif-
icantly improve the efficiency and performance of production processes. This analysis can be a valuable tool for 
organizations seeking to optimize their processes and achieve a competitive advantage in the market. The analysis 
conducted in the article confirms that effective time management has a beneficial impact on workstation perfor-
mance. The use of a multi-criteria approach in optimization enables achieving a balance between various decision 
factors. The presented simulation model and research results can be useful for decision-makers in the manufac-
turing field who aim to make more informed decisions regarding planning and optimizing production processes 
to enhance efficiency, effectiveness, and customer satisfaction. 
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INTRODUCTION 
In today's dynamic business environment, effective time 
management is crucial for achieving high performance 
and efficiency in production processes [1, 2]. This is par-
ticularly important in the context of workstations, where 
the conflict between maximizing workstation utilization 
and minimizing the number of items waiting in the buffer 
area can present a challenge for organizations [3, 4, 5]. 
The aim of this article is to provide a detailed analysis of 
the impact of effective time management on the perfor-
mance of workstations. The authors utilized the FlexSim 
program, which is a powerful tool for modeling and simu-
lating processes, to build a precise simulation model of 
the workstation [6]. The built-in optimizer was then used 
to conduct optimization, taking into account multiple de-
cision criteria [7]. 

The research results presented in the article indicate a 
positive impact of effective time management on work-
station performance. Efficient utilization of work time 
contributes to reducing the number of items waiting in 
the buffer area, which in turn leads to increased through-
put and reduced delays in production processes [8, 9]. 
An important aspect of the analysis is the application of a 
multi-criteria approach to optimization [10]. This allows 
for a balance between maximizing workstation utilization 
and minimizing the number of items waiting [11, 12]. 
Multi-criteria optimization enables the consideration of 
diverse goals and decision criteria, contributing to a more 
comprehensive approach to optimizing production pro-
cesses [13, 14]. 
As a result, effective time management on workstations, 
based on analysis and multi-criteria optimization, can sig-
nificantly improve the efficiency and performance of 
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production processes [15]. This analysis can be a valuable 
tool for organizations aiming to optimize their processes 
and achieve a competitive advantage in the market [16, 
17]. 
 
OPTIMIZATION THROUGH SIMULATION 
Optimization is the fundamental process of seeking the 
best solution (i.e., optimal values of decision variables) 
[18]. The concept of "best" depends on the goals we want 
to achieve and the constraints or restrictions of the sys-
tem [19]. To define goals and constraints, we use mathe-
matical relationships expressed in terms of decision vari-
ables. The objective function is maximized (e.g., through-
put) or minimized (e.g., total cost). It represents one or 
multiple performance indicators and determines whether 
one solution is better than another [20].  
Constraints, on the other hand, are mathematical expres-
sions that must be satisfied within the model (e.g., the 
number of operators (NumOps) must be between 1 and 
5). Constraints are similar to the objective function but in-
volve comparisons (e.g., 1 ≤ NumOps ≤ 5). Only solutions 
that satisfy all constraint comparisons are considered. So-
lutions that violate any constraint are deemed infeasible 
[21]. 
Optimization is a separate technique in operations re-
search, distinct from simulation. It follows a completely 
different approach and methodology for problem-solving. 
Simulation is used to describe the operation and perfor-
mance of a system, while optimization aims to find the 
best or improved solution based on a precisely defined 
system description and its behavior [6, 22]. There are 
many optimization methods, but many of them, such as 
linear programming, assume the problem is deterministic 
(i.e., all values in the problem definition are fixed con-
stants, not variables) [23]. Simulations, on the other hand, 
involve one or multiple stochastic or random variables, 
meaning that the problem of simulation-based optimiza-
tion is non-deterministic. This is why optimization of sys-
tems through simulation is particularly challenging and 
demanding [24]. Due to the stochastic nature of simula-
tion, optimization results come with risks and uncertain-
ties, meaning that there cannot be a strict guarantee of 
achieving optimal outcomes [25]. Simulation problems of-
ten involve multiple alternative solutions (i.e., they have a 
large solution space). The term "optimal" is used in the 
context of estimating the best-found solution during the 
search process. Simulation optimization typically involves 
an iterative approach (Figure 1).  
 

 
Fig. 1 Input to the optimizer 

This means that the simulation model generates re-
sponses (results) based on a set of input values [26]. The 
optimizer, using heuristics, makes decisions regarding 
changing the input parameter values to improve the val-
ues of the output variables [27]. Heuristics are "shortcut" 
methods that are usually fast but do not guarantee finding 
the best solution. Nevertheless, good heuristics allow for 
finding better solutions that are likely close to the optimal 
solution [9, 28]. 
There are various approaches and concepts in simulation 
optimization [6, 18]. As indicated by April et al. [20], most 
commercial methods employ an evolutionary approach, 
which explores the solution space based on an evolving 
set of solutions. The set of solutions is used to create new 
trial solutions, meaning that the new solutions are typi-
cally combinations of solutions already present in the set. 
Popular evolutionary approaches include scatter search 
and genetic algorithms. The main advantage of these 
methods is the ability to explore larger solution spaces 
with fewer evaluations of the objective function (i.e., run-
ning the simulation model for multiple replications) [16]. 
Simulation models developed in FlexSim can be optimized 
using dedicated optimization software called OptQuest. 
OptQuest is a standalone commercial product developed 
by OptTek Solutions and is provided as a package with 
FlexSim [7, 29]. OptQuest is a widely used optimization 
engine seamlessly integrated with FlexSim through the Ex-
perimenter module. Laguna [7] provides a description of 
the OptQuest approach to simulation optimization. The 
objective function in OptQuest is constructed based on 
performance metrics defined in the Experimenter mod-
ule. Objectives can be single, weighted, or patterned (Pa-
reto-optimal). These types influence how the objective 
function is utilized in the search for an optimal solution. 
The optimization process involves running the simulation 
model for one scenario - a specific set of variable values 
at a given time and number of replications - and then ad-
justing the variable values based on the objective function 
results and rerunning the scenario. Variable adjustment is 
performed by OptQuest's own algorithm. The optimiza-
tion engine employs state-of-the-art evolutionary algo-
rithms to efficiently search the design space. 
The optimizer continues the search for an optimal solu-
tion until one of the following criteria is met: (1) all possi-
ble solutions have been considered, (2) a specified num-
ber of solutions have been considered, or (3) a specified 
search time (called the wall time) has elapsed. Upon com-
pletion of the optimization search, the optimizer reports 
the best-found solutions. Unless all possible solutions 
have been evaluated, which is rare, technically best solu-
tions are not necessarily optimal [7]. 
 
RESEARCH PROBLEM 
As part of the research analysis, the following multi-objec-
tive optimization problem of determining the processing 
time for products on a machine was considered. 
In a manufacturing factory, there is a production line con-
sisting of one machine tool that is responsible for pro-
cessing various products (Fig. 2).  
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Fig. 2 Simulation model for the discussed problem built  
in the FlexSim environment 

 
The incoming stream is described by an exponential dis-
tribution, with an average time of 45 minutes between 
consecutive arrivals. In this system, the machine tool can 
process products with different processing times. Due to 
the nature of the process, engineers have indicated that 
the processing time can range from 20 to 60 minutes. 
Thus, we have a situation where significant differences in 
service time exist. 
A common approach in this situation is to use a generally 
flexible distribution with easily estimable parameters. 
One such distribution is the triangular distribution [6]. The 
parameters needed to define the triangular distribution 
are the minimum value, maximum value, and mode (most 
likely value). These parameters are usually easier to de-
termine than the mean and standard deviation in the case 
of a normal distribution. Typically, these parameters can 
be estimated by discussing the modeled operation with 
domain experts who perform or supervise the operation. 
The mean value in the triangular distribution is calculated 
using the following formula (1): 

𝜇 =
𝑚𝑖𝑛+𝑚𝑎𝑥+𝑚𝑜𝑑𝑒

3
  (1) 

According to queueing theory, the average arrival rate 
must be smaller than the average service time. If this con-
dition is not met, the system becomes overloaded, and 
the queue grows infinitely. Therefore, in this example, the 
average processing time cannot exceed 45 minutes. As a 
result, the mode will take values in the range of 20 to 55 
minutes, and the average service time will range from 
33.3 to 45 minutes. The density function plot is shown in 
Figure 3. 
 

 
Fig. 3 Density function of the triangular distribution  
for the service time 

 

The objective of the optimization is to find the optimal 
mode value in the triangular distribution that minimizes 
the waiting time of products for processing while maxim-
izing the utilization of the machine tool. Clearly, these 
mentioned decision criteria are in conflict with each 
other. This simulation model will examine these two deci-
sion criteria for different service times. 
The objective function is defined by two variables: the av-
erage queue content, which is minimized, and the ma-
chine utilization, which is maximized. These parameters 
need to be defined by adding them from the Toolbox li-
brary as Performance Measure variables (Fig. 4). 
 

 
Fig. 4 Definition of the objective function - the output variable 
for average queue content and workstation utilization 

 
In order for the optimizer to determine the optimal ser-
vice time, it requires one input parameter – the mode 
value of the triangular distribution describing the service 
time, set in the global table and assigned to the processor. 
This is the variable that will be used in the optimization 
process and also where the optimizer will generate results 
from each iteration [30]. This parameter needs to be de-
fined by adding it from the Toolbox library. Then, in the 
Value column, select Continuous as the variable type. The 
boundary conditions should be set according to the mini-
mum and maximum values for the mode in the triangular 
distribution, 20 to 55 minutes (Fig. 5). 
 

 
Fig. 5 Variable definition including the determination  
of the mode value of the triangular distribution describing  
the service time 

 
In the optimizer settings (Fig. 6), 40 feasible solutions have 
been considered. For each of them, the model was repli-
cated from 5 to 10 times.  
The number of model runs for individual scenarios de-
pends on how many replications are necessary to achieve 
an 80% confidence level obtained with a probability of 5%. 
In this task, the objective function has two criteria. 
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Fig. 6 FlexSim optimizer configuration 

 
The first criterion aims at minimization since the company 
seeks to reduce the average queue content. The second 
criterion of the objective function aims at maximizing the 
utilization of the workstation. The optimizer will adjust 
the values of the defined parameters to achieve an opti-
mal value where the queue content is minimized while the 
workstation utilization is high. 
 
ANALYSIS OF THE RESULTS 
As a result of the optimizer's work, multiple non-domi-
nated solutions were obtained, forming a curve known as 
the Pareto optimal solutions front (Fig. 7). The front de-
termines the best operating conditions for the studied 
system in terms of the degree of utilization and the aver-
age number of work-in-progress items in the queue. 
The presented results can be highly useful for the deci-
sion-maker as they can choose the best settings based on 
a visible compromise between these two criteria. 
 

 
Fig. 7 Front of Pareto solutions for the service time optimization 
problem 

 
Two exemplary solutions were selected for further analy-
sis: Scenario 27 and Scenario 10. For Scenario 27, the ser-
vice time mode was 41.13 minutes, while for Scenario 10, 
the mode was 54.84 minutes. Figure 8 presents a compar-
ison of the results regarding the average queue content 
for both examined scenarios.  
 

 
Fig. 8 Average number of items in the queue: a) Scenario 27,  
b) Scenario 10 

 
Figure 9 shows a comparison of the workstation utilization 
level. Additionally, Figure 10 provides the average service 
time for these scenarios. When the workstation is utilized 
at 90% of its capacity, the number of items in the queue is 
approximately 4, and the average service time is 40.36 
minutes. However, when the workstation is almost 97% 
loaded, the number of items in the queue increases to 
8.54, and the average service time is nearly 45 minutes. 
 

 
Fig. 9 Workstation utilization level: a) Scenario 27,  
b) Scenario 10 

 

 
Fig. 10 Average service time: a) Scenario 27, b) Scenario 10 

 
In summary, the analysis of results for Scenarios 27 and 
10 indicates that Scenario 27 achieves better outcomes in 
terms of the average queue content, workstation 
utilization, and average service time compared to 
Scenario 10. This means that adopting Scenario 27 can 
bring benefits related to the optimization of the product 
processing process. By using this scenario, the company 
can reduce the number of objects waiting in the queue, 
shorten the service time, and make more efficient use of 
available workstations. 
When the workstation is utilized at 90% of its capacity, the 
system maintains a low average queue content (around 4 
objects) while providing an acceptable average service 
time (40.36 minutes). This means that the company can 
effectively handle the majority of products, minimizing 
customer waiting time. 
However, when the workstation is almost 97% loaded, the 
number of objects in the queue increases to 8.54, and the 
average service time is nearly 45 minutes. In such a 
situation, the company may face challenges related to 
system performance and longer service time, which can 
lead to customer dissatisfaction and a decline in service 
quality. 
Therefore, considering the analysis of the results, it is 
recommended to adopt Scenario 27 as the preferred 
solution. With proper utilization of workstations, the 
company will have the opportunity to minimize the 
number of objects waiting in the queue, shorten the 
service time, and ensure efficient resource utilization, 
contributing to improved service quality and increased 
customer satisfaction. 
 
 

 

a) b) 

 

 

a) b) 

 

 

a) b) 
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CONCLUSION 
The presented article discusses research on the impact of 
efficient time management on workstation performance 
in the context of the trade-off between maximizing work-
station utilization and minimizing the number of items 
waiting in the queue. 
By employing a multi-criteria optimization approach, the 
researchers had the opportunity to minimize the waiting 
time of products for processing while simultaneously 
maximizing machine utilization. Using a flexible triangular 
distribution to describe the service time, simulations and 
optimizations were conducted, leading to the creation of 
a Pareto optimal solutions front. 
The analysis of results for various scenarios confirmed 
that efficient time management yielded favorable out-
comes. Specifically, Scenario 27 achieved better results in 
terms of the average queue content, workstation utiliza-
tion level, and average service time. By balancing the 
workload of workstations and minimizing waiting time, 
decision-makers have the opportunity to make optimal 
choices in settings, considering the compromise between 
these two factors. 
The presented example illustrates the potential of dis-
crete event simulation models in enhancing production 
processes by identifying optimal time and resource man-
agement strategies. Decision-makers in the field of pro-
duction can utilize these results to make more informed 
decisions regarding planning and process optimization, 
which can lead to significant benefits in terms of perfor-
mance, efficiency, and customer satisfaction. 
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