

PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie
Technika, Informatyka, Inżynieria Bezpieczeństwa 2017, t. V, s. 155–163

http://dx.doi.org/10.16926/tiib.2017.05.13

Mikhail Selianinau
Wydział Matematyczno-Przyrodniczy
Akademia im. Jana Długosza
al. Armii Krajowej 13/15, 42-200 Częstochowa
e-mail: m.selianinov@ajd.czest.pl

THE BASIC STRUCTURAL ELEMENTS OF MODULAR
DEVICES FOR DIGITAL INFORMATION PROCESSING

Abstract. In this paper, we consider four basic methods for design of the modular ad-
ders, subtractors and multipliers suitable for modular number system: the direct logical
method, the adder method, the ring shift method and the tabular method. It is shown that
the variant of look-up table implementation of modular arithmetic operations using
permanent storage devices is the simplest and most effective for organization of high-
speed pipeline digital information processing.
Keywords: Modular arithmetic, modular number system, modular computing struc-
tures, modular operations, look-up table data processing.

BAZOWE ELEMENTY STRUKTURALNE URZĄDZEŃ
MODULARNYCH DO CYFROWEGO PRZETWARZANIA

INFORMACJI

Streszczenie. W niniejszym artykule przedstawiono cztery główne sposoby projek-
towania modularnych sumatorów, subtraktorów oraz mnożników: bezpośrednia metoda
logiczna, metoda oparta na podstawie sumatorów binarnych, metoda przesunięcia cy-
klicznego oraz metoda tabelaryczna. Wykazano, że wariant tabelarycznej realizacji
operacji arytmetycznych z zastosowaniem pamięci tylko do odczytu jest najbardziej
prostym i skutecznym rozwiązaniem w zakresie szybkiego potokowego przetwarzania
informacji cyfrowej w resztowych systemach liczbowych.
Słowa kluczowe: arytmetyka modularna, modularne systemy liczbowe, modularne struk-
tury obliczeniowe, operacje modularne, tabelaryczne przetwarzanie informacji.

156 M. Selianinau

Introduction

The performance increase and the functionality expansion have always
been and now are the main goals of the developing process of computing ma-
chinery. The implementation of new and more efficient methods of organization
and realization of computation processes is one of the main ways to achieve
these goals along with improvement in computer engineering. The analysis of
the known approaches used in the development of high-performance computing
structures shows that all of them have one common distinctive feature, which
essence consists in the application of certain forms of parallel digital infor-
mation processing.

Among all numerical systems, the number systems with a parallel struc-
ture are the most suitable for carrying out the parallel computations, especially
the high-speed ones. First of all, the modular number systems (MNS), which are
characterized by the maximum level of internal parallelism, belong to such sys-
tems [1−5]. The unique property of MNS to perform a natural decomposition of
computational processes into independent components of less complexity led to
the widespread use of modular arithmetic (MA) in modern computer science
and its applications as an effective mathematical apparatus for a mapping of
computational processes into the high-speed parallel architectures.

The basic notation and terminology

Let us introduce the following notation:
Z is the set of all integers;
⌈𝑥⌉ denotes the ceiling of 𝑥, i.e. the smallest integer greater than or equal

to 𝑥, ⌈𝑥⌉ = min {𝑦 ∈ 𝐙 | 𝑦 ≥ 𝑥};
𝐙௠ = {0, 1, … , 𝑚 − 1} is the set (ring) of least nonnegative residue mod-

ulo 𝑚 > 1;
𝐙௠

∗ = {1, 2, … 𝑚 − 1} is the cyclic group of the ring 𝐙௠;
𝜑(𝑚) is the Euler function (the number of positive residues of the ring

𝐙௠ relatively prime to 𝑚);
|𝑥|௠ denotes the element of 𝐙௠ congruent to x modulo m;
𝑚ଵ, 𝑚ଶ, … , 𝑚௞ are the natural modules (k ≥ 2);

The modern approaches for implementation the modulo
operations

One of the most important characteristics of MA caused by the parallel-
ism of the MNS structure is that the process of performing any operation on

 The basic structural elements… 157

numbers in a modular code, both modular and non-modular, reduces to a se-
quence of sets of single-step operations of the form

 𝛾 = 𝐹(𝛼, 𝛽), (1)

where 𝐹 is some function; 𝛼, 𝛽 and γ are the nonnegative integer variables
whose maximum values are commensurable with the values of the used mod-
ules of MNS. Various special methods which ensure high speed can be applied
to implement the operations described by the relation (1) due to the smallness of
𝛼 and β.

The adders, subtractors and multipliers with respect to MNS modules are
the most common functional units (FU) of modular computing devices. There
are four main methods for designing modular units: the direct logical method,
the adder method, the ring shift method as well as the table method [3].

The direct logical method

In the direct logical design method, the modular operations are described
at a level of switching function systems by means of which the binary digit val-
ues of the sums, differences and products of residues with respect to the corre-
sponding modules are formed.

The result γ of the realized operation of the type 𝛾 = 𝑂(𝛼, 𝛽) (𝛼 ∈ 𝐙௠೔
,

𝛽 ∈ 𝐙௠೔
; 𝑖, 𝑗 ∈ 𝐙௞; 𝑂 is a known function) is obtained in the binary code

𝛾 = (𝛾ఒିଵ 𝛾ఒିଶ … 𝛾଴)ଶ by using the previously synthesized Boolean relations

 𝛾௜ = 𝑂௟ ቀ𝛼଴
(௜)

, 𝛼ଵ
(௜)

, … , 𝛼ఒ೔ିଵ
(௜)

; 𝛽଴
(௜)

, 𝛽ଵ
(௜)

, … , 𝛽ఒೕିଵ
(௜)

ቁ (𝑙 = 0, 1, … , 𝜆 − 1), (2)

where 𝑂௟ is some switching function; 𝛼଴
(௜)

, 𝛼ଵ
(௜)

, … , 𝛼ఒ೔ିଵ
(௜) and 𝛽଴

(௜)
, 𝛽ଵ

(௜)
, … , 𝛽ఒೕିଵ

(௜)

are the binary digits of the operands 𝛼 and 𝛽, respectively; 𝜆௜ = ⌈𝑙𝑜𝑔ଶ 𝑚௜⌉,
𝜆௝ = ඃlogଶ 𝑚௝ඇ, 𝜆 is the code length of the value 𝛾.

Modular adders, subtractors and multipliers are implemented in the form
of combinational circuits, which are synthesized within the traditional approach
applied in the case of binary digital devices. As a rule, the expressions (2) have
a simple form and allow an effective realization by means of the simple pro-
grammable logical arrays (PLA) due to the small values of the parameters 𝜆௜
and 𝜆௝.The modular matrix structures on this basis are distinguished by sim-
plicity, regularity and high competitiveness. The pipeline information pro-
cessing is easily organized within these structures.

158 M. Selianinau

The adder method

This method implies that the binary adders are provided with the addi-
tional logic circuits that enable the addition of the residues with respect to the
selected modules, at the same time all the arithmetic operations are carried out
during a certain number of additions. The adder method is realized most simply
with the use of modules of the form 𝑚 = 2௕ , 2௕ ± 1 (𝑏 is a natural number) and
its application is reasonable only for sufficiently large 𝑚.

The idea underlying the adder method of the organization of computation
processes in modular blocks consists in the use of the index principle of perfor-
mance of the modular calculations and the binary adders as the basic FU. The

isomorphism of the multiplicative group 𝐙௠
∗ and the additive group 𝐙௠ିଵ set

by the mapping 𝐺 ∶ 𝐙௠
∗ → 𝐙௠ିଵ, which assigns to each element 𝜒 ∈ 𝐙௠

∗ the
unique element 𝐺(𝜒) = ind௠ 𝜒 from 𝐙௠ିଵ satisfying the equality

 ห𝑔୧୬ୢ೒ ఞห
௠

= 𝜒, (3)

plays a significant part in practical realization of the mentioned idea [6]. Here,
𝑔 is a primitive root modulo 𝑚 defined as an element of commutative group
〈𝐙௠

∗ ,×〉 ⊂ 〈𝐙௠, +〉 with the order 𝑁 = 𝜑(𝑝) = 𝑚 − 1; the element ind௚ 𝜒 of
the group 𝐙௠ିଵ is called an index or discrete logarithm of the number χ to the
base 𝑔 modulo 𝑚. According to (3), in the case of prime 𝑚 for any 𝛼, 𝛽 ∈ 𝐙௠

∗
the following relation is true

 |𝛼𝛽|௠ = ห𝑔୧୬ୢ೒|ఈఉ|೘ห
௠

= ቚ𝑔
ห୧୬ୢ೒ ఈା୧୬ୢ೒ ఉห

೘షభቚ
௠

. (4)

Thus, the multiplication modulo prime 𝑚 can always be reduced to mod-
ular addition because of the isomorphism of multiplicative group 𝐙௠

∗ and addi-
tive index group 𝐙௠ିଵ. According to (4), in order to obtain the result of the
modular multiplication |𝛼𝛽|௠ it is enough to determine the indices ind௚ 𝛼 and
ind௚ 𝛽 of the operands 𝛼 and 𝛽, add them modulo 𝑚 − 1 and then transform the
resulting residue ind௚|𝛼𝛽|௠ = หind௚ 𝛼 + ind௚ 𝛽ห

௠ିଵ
 into the desired product

|𝛼𝛽|௠. For small value of the module 𝑚, the direct and inverse transfor-
mations of the residues χ and ind௚ 𝜒 (𝜒 ∈ 𝐙௠) corresponding to the map-
pings
𝐺: χ → ind௚ 𝜒 and 𝐺ିଵ: ind௚ 𝜒 → χ in practice are easily carried out by the
look-up table method [2, 3]. Since the volume of the tables required for transfor-
mations is about 10 times less than it is for the table of residue multiplication mod-
ulo 𝑚, then a considered method of modular multiplication with the use of indices

 The basic structural elements… 159

appears more efficient than a direct table method, especially with increase of the
value of module 𝑚.

The advantages of the adder method become even more appreciable if the
addition of the indices ind௚ 𝛼 and ind௚ 𝛽 is performed not modulo 𝑚1 but with
respect to the set of pairwise prime modules whose product coincides with 𝑚1.
We note that in view of the simplicity of 𝑚, the module 𝑚 − 1 is composite. The
use of specified decomposition procedure for the formation of ind௚|𝛼𝛽|௠ allows
us to optimize the corresponding adder architectures both in complexity and
speed.

The ring shift method

Another approach to creation of modular blocks, at which the data pro-
cessing is carried out exclusively in a unitary code using only registers, is based
on the use of certain properties of the residue ring 𝐙௠ as well as the tables of
addition, subtraction and multiplication operations modulo 𝑚, i.e. the matrices
[|𝛼 + 𝛽|௠], [|𝛼 − 𝛽|௠], [|𝛼 × 𝛽|௠] (𝛼, 𝛽 ∈ 𝐙௠, 𝑚 > 1). An example of a ma-
trix structure of addition and subtraction operations for the module 𝑚 = 5 is
shown below:

 [|𝛼 + 𝛽|௠] =

⎣
⎢
⎢
⎢
⎡

 0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3 ⎦

⎥
⎥
⎥
⎤

 , [|𝛼 − 𝛽|௠] =

⎣
⎢
⎢
⎢
⎡

 0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0 ⎦

⎥
⎥
⎥
⎤

. (5)

As it may be seen from (5), the 𝛼th matrix row of the modular addition
(subtraction) can be obtained by the 𝛽-fold cyclic shift to the left (right) of the
elements of the zero row.

Let us consider the algorithm of formation of the modular sum |𝛼 + 𝛽|௠
in a unitary code, which is determined as an 𝑚-bit code of the value 𝜒 ∈ 𝐙௠
such that its χth digit is equal to 1.

The ring shift method is based on the isomorphism of the finite Abelian
groups 〈𝐙௠; +〉 and 〈𝐄௠; ∘〉 of the order 𝑚, where 𝐄௠ = {2ఞ | 𝜒 ∈ 𝐙௠} and the
operation "∘" is performed by the rule

𝑎 ∘ 𝑏 = 2|୪୭୥మ ௔ ା ୪୭୥మ ௕|೘ (𝑎, 𝑏 ∈ 𝐄௠). (6)

The required isomorphic mapping 𝑈 ∶ 𝐙௠ → 𝐄௠ associates each residue
𝜒 ∈ 𝐙௠ with an element 𝑥 = 2ఞ of the set 𝐄𝒎. At the same time, according to
(6) for 𝛼, 𝛽 ∈ 𝐙௠ and 𝑎, 𝑏 ∈ 𝐄௠ the following equalities hold

160 M. Selianinau

𝑈(𝛼) ∘ 𝑈(𝛽) = 𝑈(|𝛼 + 𝛽|௠), (7)

|𝑈ିଵ(𝑎) + 𝑈ିଵ(𝑏)|௠ = 𝑈ିଵ(𝑎 ∘ 𝑏). (8)

It follows from (7) and (8) that in order to obtain the modular sum
𝛾 = |𝛼 + 𝛽|௠ it is sufficient to convert the operand 𝛼 into the 𝑚-bit unitary
code (i.e. the binary code of the number 𝑈(𝛼)) using the decoder. Further, the
generated code is cyclically shifted by 𝛽 bits to the left (towards the higher bits)
in the 𝑚-bit ring shift register, and then the resultant unitary code (i.e. the bina-
ry code of 𝑈(𝛾)) is transformed into the binary code of the required residue 𝛾
using the encoder.

Using the ring shift method it is possible to perform not only addition but
also subtraction of the elements of the set 𝐙௠. In contrast to the sum |𝛼 + 𝛽|௠,
when obtaining the modular difference |𝛼 − 𝛽|௠ of residues 𝛼 and 𝛽 the 𝑚-bit
unitary code 𝑈(𝛼) is cyclically shifted by 𝛽 bits not to the left but to the right,
i.e. in the direction of the lower bits.

The realizations of this type have a regular structure and are well-suited
for chips implementation.

Let us notice that in the case of the modular sum

𝑅 = อ෍ 𝑅௟

ఔ

௟ୀଵ

อ

௠

 (𝑅௟ ∈ 𝐙௠), (9)

consisting of 𝜈 > 2 terms the effectiveness of the application of the ring shift
method substantially increases due to the simplicity of accumulating the results
of the summations performed during the calculation (9). This is clearly illustrat-
ed by the following implementation algorithm of the expression (9):

1) convert 𝑅ଵ into the unitary code (𝑅ଵ → 𝑈(𝑅ଵ)) and assign the initial
value 𝑈(𝑅ଵ) to the 𝑚-bit variable 𝑟 (𝑟 = 𝑈(𝑅ଵ));

2) assign the value 2 to the index 𝑙 (𝑙 = 2);
3) shift cyclically the binary code of 𝑟 by 𝑅௟ bits to the left;
4) if the equality 𝑙 = 𝜈 holds, then go to the step 5); otherwise increment

the index 𝑙 by 1 (𝑙 = 𝑙 + 1) and go to the step 3);
5) convert the unitary code of 𝑟 into the binary code (𝑟 → 𝑈ିଵ(𝑟)) and

assign the sought-for value 𝑈ିଵ(𝑟) to the variable 𝑅 (𝑅 = 𝑈ିଵ(𝑟)).
If the actions provided in items 1) and 2) of the given algorithm are re-

placed by the following sequence of operations:
- assign the initial state 𝑟 = 𝑈(0) = 2଴ = 1 to the the 𝑚-bit

variable 𝑟;
- assign the value 1 to the index 𝑙 (𝑙 = 1),

 The basic structural elements… 161

then the calculation process of the expression (9) is carried out using only
the cyclic shift operations and the encryption operation in the final step
(see item 5) above).

As for the multiplication operation modulo 𝑚, the structure of the
matrix [|𝛼 × 𝛽|௠] is visible from the following example for 𝑚 = 5:

[|𝛼 × 𝛽|௠] =

⎣
⎢
⎢
⎢
⎡

 0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1 ⎦

⎥
⎥
⎥
⎤

 . (10)

This operation can be reduced to modular addition because of the iso-
morphism of the multiplicative group 𝐙௠

∗ and the additive index group 𝐙௠ିଵ.
Taking the above into account, it follows from (4) that in order to obtain the
result |𝛼𝛽|௠ of the modular multiplication in the case of prime 𝑚 it is enough
to generate the (𝑚 − 1)-bit unitary code of the index ind௚ 𝛼 with the help of
decoder, cyclically shift it by ind௚ 𝛽 bits to the left and then transform the
(𝑚 − 1)-bit unitary code of the residue หind௚ 𝛼 + ind௚ 𝛽ห

௠ିଵ
= ind௚|𝛼𝛽|௠

into the binary code of the desired modular product |𝛼𝛽|௠ using an encoder.
The defined approach can be generalized to composite modules.

It should be noted that the ring shift method can naturally be used to add
the indices in the adder method considered above. In this case, the transfor-
mations 𝛼 → ind௚ 𝛼 and ind௚|𝛼𝛽|௠ → |𝛼𝛽|௠ are changed by the transfor-

mations 𝛼 → 2୧୬ୢ೒ ఈ and 2୧୬ୢ೒|ఈఉ|೘ → |𝛼𝛽|௠, which are realized by a decoder
and an encoder, respectively. If the concerned shift ring process (after obtaining
|𝛼𝛽|௠ in the (𝑚1)-bit shift register) is carried out with its initial content
𝑈(0) = 1, then only the second substitution of the transformations mentioned
above is needed.

The table implementation using memory blocks

The considered designing methods of the modulo adders, subtractors and
multipliers allow us to construct the modular blocks with high speed. However,
the practical application of this blocks is expedient only when they are per-
formed in the form of VLSI chips.

In the absence of the required VLSI chips, the tabular implementation
of arithmetic operations in MNS using persistent storage devices (e.g., read
only memory (ROM)) and other high-density storage devices is the simplest
and most effective technique [2, 3]. In this way not only the modular opera-
tions of addition, subtraction and multiplication can be implemented but also

162 M. Selianinau

more complex operations, for example, the expressions of the form:
 |𝐹ଵ(𝛼) ± 𝐹ଶ(𝛽)|௠ and |𝐹ଵ(𝛼) × 𝐹ଶ(𝛽)|௠, where 𝐹ଵ(𝛼) and 𝐹ଶ(𝛽) are some
functions; 𝛼 and 𝛽 are the residues with respect to some modules. At the same
time, for the most of the required table schemes the hardware costs can be sub-
stantially reduced due to the symmetry of modular operations.

If, for example, a certain ROM has a capacity of 2௕ words of length
𝑏ᇱ bits, then it can be used to implement any function of the form 𝜒ᇱ =

𝐹(𝜒ଵ, 𝜒ଶ, … , 𝜒௟), where 𝜒ᇱ ∈ ൛0, 1, … , 2௕ᇲ
− 1 ൟ; 𝜒௜ ∈ {0, 1, … , 2௕೔ − 1 };

(𝑖 = 1, 2, … , 𝑙); ∑ 𝑏௜
௟
௜ୀଵ ≤ 𝑏; 𝑏, 𝑏ᇱ, 𝑏ଵ, 𝑏ଶ, … , 𝑏௟ and 𝑙 are natural numbers. To do

this, it is enough to write to the ROM memory the value 𝐹(𝜒ଵ, 𝜒ଶ, … , 𝜒௟) at the
address Χ = 𝜒ଵ + 𝜒ଶ2௕భ + ⋯ + 𝜒௟2௕భା௕మା⋯ା௕೗షభ for all admissible values of the
variables 𝜒ଵ, 𝜒ଶ, … , 𝜒௟. Then, when a set of values 〈𝜒ଵ, 𝜒ଶ, … , 𝜒௟〉 is fed to the
address inputs of the ROM, the required result 𝜒ᇱ will be formed at its output.

In the case of pipeline information processing, the registers are connected
to the outputs of the ROM. At the same time, the modular clock time 𝑡ெ் is
determined by the time 𝑡ோைெ needed to read the word from the memory and the
time 𝑡ோ needed to store it in the register, i.e. 𝑡ெ் = 𝑡ோைெ + 𝑡ோ.

Within the framework of the considered variant of tabular implementa-
tions, the ROMs in essence are unique logical elements and form the elemental
basis of modular digital devices in combination with conventional logic ele-
ments as well as typical components of computing machinery which carry out
digital information processing at the level of elementary operations on words.
The modular computing structures based on the ROMs are distinguished by the
uniformity, high degree of integration, simplicity of pipeline configurations;
they provide a high speed and reliability and their effectiveness is steadily in-
creasing with the improvement of integrated circuit technology.

Conclusions

The foregoing allows us to conclude that because of the isomorphism of
the multiplicative group of the ring 𝐙௠ and the additive index group 𝐙௠ିଵ there
is a principal possibility of constructing the modular blocks based only on the
FU of practically the same type, for example, mainly on the basis of the ROM,
PLM, shift registers or binary adders. This circumstance ensures exceptionally
high manufacturability of modular computing architectures.

From a practical point of view, the fact that the resulting computing struc-
tures require only the use of FU operating with low-bit input values, when im-
plementing the algorithms of MA, is of special interest. Since the execution of
any operation on arbitrary set of residues with a relatively small total digit ca-
pacity can, in principle, always be done by the tabular way using the same type

 The basic structural elements… 163

of FU (ROM, PLM, etc.), then the hardware modular computing structures are
characterized by an extremely high degree of uniformity and regularity, ideally
consistent with the design features of the modern and prospective VLSI tech-
nologies, are well-suited to restructuring and organization of adaptive operation
modes, have a low design cost as well as a number of other important ad-
vantages.

References

[1] Akushsky I.J., Yuditsky D.I., Computer arithmetic in residual classes,
Soviet radio, Moscow, 1968 (in Russian).

[2] Chernyavsky A.F. (red.), High-speed methods and systems of digital in-
formation processing, Belarusian State University Press, Minsk, 1996 (in
Russian).

[3] Kolyada A.A., Pak I.T., Modular structures of pipeline digital infor-
mation processing, University Press, Minsk, 1992 (in Russian).

[4] Mohan P.V. Ananda, Residue number systems: Algorithms and archi-
tectures, Kluwer Academic Publishers, 2002.

[5] Omondi A., Premkumar B., Residue number systems. Theory and imple-
mentation, Imperial College Press, London, 2007.

[6] Vinogradov I.M., Fundamentals of number theory, Nauka, Moscow, 1981
(in Russian).

