Krystian MALEK, Karolina Skoczkowska, Roman Ulbrich

e-mail: krystian.malek@onet.eu

Katedra Inżynierii Środowiska, Wydział Mechaniczny, Politechnika Opolska, Opole

Zastosowanie metody PIV do analizy zachowania się złoża w aparacie bębnowym

Wstęp

Aparaty bębnowe ze względu na prostą konstrukcję, niski koszt budowy i eksploatacji, możliwość pracy ciągłej oraz łatwość w załadunku i wyładunku materiałów znalazły szerokie zastosowanie w procesach przesiewania, granulacji, mieszania, suszenia, rozdrabnianie oraz mielenia. Uniwersalność tego typu aparatów spowodowała wzrost zainteresowania badaczy optymalizacją oraz rozpoznaniem procesów w nich zachodzących.

Dla każdego z wymienionych procesów należy doprowadzić złoże do odpowiedniego stanu, który może się różnić w zależności od prowadzonego procesu. Przykładem jest proces rozdrabniania i granulacji. Pierwszy z nich należy prowadzić dla najdłuższej trajektorii ruchu cząstek tak, aby siła opadających mielników na mieliwo była największa. W przypadku granulacji proces prowadzi się w czasie, gdy cząstki cyrkulują wokół zwartego złoża – podczas toczenia cząstki aglomerują dzięki rozprowadzanej w aparacie cieczy. Optymalny ruch jest zatem różny dla różnych procesów. Należy więc określić prędkości obrotowe dla których założone procesy technologiczne zachodzą z największą intensywnością [Sherrington i Oliver 1981; Ajaal 1999; Sun i in., 2009; Ghasemi i in., 2013].

Aparaty bębnowe najczęściej wprowadzane są w ruch obrotowy za pomocą silnika elektrycznego oraz napędu łańcuchowego lub zębatego. W zależności od wykorzystania aparatów bębnowych do pracy ciągłej lub okresowej wyróżnia się dwa typy aparatów: o osi obrotu bębna pod niewielkim kątem w celu naturalnego transportu materiału w kierunku wylotu oraz o poziomej osi obrotu przy pracy okresowej, co eliminuje problem z niewyważoną masą [*Boss, 1987*].

Metoda PIV

Anemometria obrazowa PIV (*Particle Image Velocimetry*) jest często wykorzystywaną metodą do wyznaczania lokalnych pól prędkości cząstek. Odmianą metody PIV, w której wykorzystuje się cząstki znacznikowe, jest cyfrowa anemometria obrazowa DPIV (*Digital Particle Image Velocimetry*), która pozwala na znalezienie wektorów prędkości przepływającego płynu (materiału) metodą korelacji obrazów.

Na rys. 1 i 2 przedstawiono zasadę wyznaczania lokalnych wektorów prędkości cząstek. Analiza polega na podzieleniu obszaru zdjęcia na tzw. sekcje najczęściej o wymiarach od 8 x 8 pikseli do 64 x 64 piksele. Wielkość sekcji jest zależna od rozdzielczości i wielkości badanej przestrzeni tak, aby maksymalne przesunięcie cząstek wynosiło jedną trzecią jej podstawy.

Rys. 1. Przemieszczenie sekcji: 1 – sekcja obrazu 1, 2 – sekcja obrazu 2, 2' – sekcja obrazu 1 odnaleziona na obrazie 2, δ – przemieszczenie sekcji 2' względem sekcji obrazu 1 [Suchecki i Alabrudziński, 2003a]

Rys. 2. Zamiana przemieszczeń sekcji na pole prędkości [Suchecki i Alabrudziński, 2003a]

W porównywanych regionach muszą występować wspólne cząstki w związku z czym, przy doborze wielkości sekcji należy brać również pod uwagę częstotliwość rejestracji obrazów.

Kolejnym krokiem jest znalezienie przemieszczenia sekcji o określonym rozkładzie poziomu szarości obrazu drugiego względem obrazu pierwszego (Rys.1.) stosując szybkie transformacje *Fouriera* (FFT). Ostatnim etapem wyznaczania wektorów prędkości jest uwzględnienie współczynnika skali za pomocą wymiaru charakterystycznego na obrazie oraz czasu pomiędzy rejestracją dwóch kolejnych obrazów lokalizując wektor prędkości w środku sekcji (Rys. 2) [*Zając i Ulbrich, 2002; Suchecki i Alabrudziński 2003a; 2003b; Zając i Ulbrich 2005; Ligus i Ignasiak 2010; Niedostatkiewicz, 2010; Karaś i in., 2014*].

Dokładność przy wyznaczaniu pól prędkości metodą PIV zależy od takich parametrów jak [*Suchecki i Alabrudziński, 2003a*]:

- wielkość sekcji obrazu, większe okno zwiększa obszar gdzie prędkość ulega uśrednieniu,
- maksymalna wielkość rejestrowanego przemieszczenia nie powinna przekraczać 1/2 wielkości okna,
- wartość składowej pola prędkości równoległej do płaszczyzny rejestracji i prostopadłej do płaszczyzny oświetlenia układu, pojawianie się oraz znikanie cząstek w czasie pomiaru pogarsza dokładność wyznaczenia średniego przemieszczenia.

Niedokładność wynikająca z aproksymacji pola koła w układzie współrzędnych prostokątnych powoduje w pobliżu brzegu bębna błąd poniżej 2%.

Badania doświadczalne

Stanowisko badawcze

Stanowisko badawcze (Rys. 3) składało się z obrotowego bębna wykonanego z przezroczystego pleksiglasu o średnicy 500 mm oraz szerokości 30 mm. Bęben napędzany był za pomocą silnika elektrycznego połączonego z falownikiem w celu płynnej regulacji obrotów bębna. Pomiaru prędkości obrotowej dokonywano metodą optyczną przy użyciu tachometru. W celu poprawy jakości rejestrowanych obrazów bęben oświetlono dwoma reflektorami a jego tylną ścianę pomalowano czarną emalią. Obrazy rejestrowano przy użyciu szybkiej kamery CMOS HCC–1000 (1024MB) połączonej ze stanowiskiem komputerowym.

Materiał i zakres badań

Materiałem użytym w badaniach były kuliste cząstki z tworzywa sztucznego o średnicy 6 mm i gęstości nasypowej 1250 kg/m³. Stopień wypełnienia wynosił 20% objętości bębna. Zakres prędkości, przy których rejestrowano mapy bitowe wynosił od 0 do 100 obr/min, co 10 obr/min oraz co 2 obr/min w pobliżu prędkości charakterystycznych.

Nr 1/2017

INŻYNIERIA I APARATURA CHEMICZNA

Rys. 3. Schemat stanowiska badawczego

Technika pomiarowa

Obrazy w postaci monochromatycznych map bitowych o rozdzielczości 1024 x 1024 pikseli rejestrowano z częstotliwością 462 Hz. Przy zdjęciach 8-bitowych skala odcieni szarości mieści się w zakresie od 0 (pełna czerń) do 255 (czysta biel). W jednej serii pomiarowej zapisywano 50 pojedynczych obrazów. Uzyskane obrazy poddano wstępnej obróbce w programie *PhotoScape* w celu wyodrębnienia kadrowanego na okrągło obszaru badawczego o wymiarach 1000 x 1000 pikseli.

W celu oceny stanu złoża w ruchu pełne informacje uzyskuje się dopiero po wyznaczeniu lokalnych pól prędkości cząstek, wykorzystując program typu PIV. W programie tym do ustalenia skali przyjęto znaną średnicę bębna, zaś czas pomiędzy kolejnymi klatkami wynika bezpośrednio z częstotliwości rejestracji szybkiej kamery i wynosił 2,164 ms. Na podstawie wstępnych wyników dobrano wymiar sekcji obliczeniowej 32 x 32 piksele.

Na rys. 4 przedstawiono przebieg obrazowaniu procesów zachodzących w aparacie bębnowym z zastosowaniem metody PIV.

Rys. 4. Zastosowanie metody PIV w obrazowaniu procesu zachodzącego w aparacie bębnowym, a - obraz z kamery, b - wektory prędkości otrzymane z programu typu PIV, c - pełen obraz trajektorii ruchu cząstek

Wyniki analiz

Cyfrowa anemometria obrazowa pozwala na określenie ruchu cząstek szybko poruszającego się ośrodka – zarówno cieczy jak i ciała stałego. Metoda ta pozwala na obserwację procesów zachodzących z dużą prędkością – takich, które oko ludzkie nie jest w stanie zarejestrować, poprzez wykonywanie wielu szybkich zdjęć.

Zastosowanie cyfrowej anemometrii obrazowej w badaniach nad aparatami bębnowymi pozwoliło na pełne rozpoznanie zachowania się złoża, co nie jest możliwe przy często stosowanej statycznej analizie obrazu wybranego losowo zdjęcia i rozkładu przestrzennego cząstek. Zastosowanie metody PIV umożliwiło określenie lokalnych wektorów prędkości a co za tym idzie określenie zachowania się złoża dla różnych, zadanych parametrów bębna oraz jego wypełnienia.

Wektory prędkości pozwoliły wyznaczyć charakterystyczne strefy w złożu (Rys. 5) takie jak: wynoszenia, swobodnego opadania, toczenia, tzw. nerki oraz strefy martwej, w której cząstki nie przemieszczają się.

Tab. 1. Rozkład wektorów prędkości w aparacie bębnowym

przy różnych prędkościach obrotowych

INŻYNIERIA I APARATURA CHEMICZNA

Rys. 5. Strefy w złożu dla prędkości 50 obr/min

Długość wektorów prędkości pozwala na odczytanie prędkości poruszających się cząstek w bębnie, co jest dodatkowym parametrem przy doborze optymalnej roboczej prędkości obrotowej. W przypadku mielenia poszukuje się zakresu prędkości obrotowych bębna w czasie, których trajektoria ruchu oraz wartość prędkości cząstek są największe. W czasie procesu suszenia materiałów o niskiej wytrzymałości prędkości cząstek powinny być odpowiednio mniejsze, lecz przy zachowaniu cyrkulacji złoża.

W tab. 1 przedstawiono wyznaczone w programie wektory prędkości cząstek dla prędkości pracy aparatu w zakresie od 10 do 100 obr/min, co 10 obr/min. Na podstawie wektorów prędkości możliwe jest jednoznaczne określenie charakterystycznych stanów zachowania się złoża omówionych w literaturze [*Boss, 1987*].

Wnioski

Otrzymane w programie typu PIV pola prędkości pozwoliły na wyznaczenie stref w złożu (w szczególności tzw. strefy martwej) co nie jest możliwe przy statycznej analizie pojedynczego obrazu.

Znajomość lokalnych pól prędkości cząstek wypełnienia pozwala na jednoznaczne określenie prędkości charakterystycznych w aparatach bębnowych a to z kolei pozwoli na optymalizację wybranych procesów zachodzących w aparatach bębnowych. Cyfrowa anemometria obrazowa z powodzeniem może być wykorzystywana do analizy zachowania wypełnienia w aparatach bębnowych

LITERATURA

- Ajaal T. T., (1999). The Development and characterization of a ball mill for mechanical alloying. MSc thesis (Engineering), Queen's University, Kingston, Ontario, Canada
- Boss J., (1987). Mieszanie materiałów ziarnistych. PWN, Warszawa
- Ghasemi Y., Kianmehr M. H., Mirzabe A.H., Abooali B., (2013). The effect of rotational speed of the drum on physical properties of granulated compost fertilizer. *Physicochem. Probl. Miner. Process.*, 49(2), 743–755
- Karaś M., Zając D., Ulbrich R., (2014). Wizualizacje przepływu dwufazowego w przestrzeni międzyrurowej [w:] Ulbrich R. (red.) Nowoczesne metody badawcze dla przepływu układów wielofazowych. Wyd. Pol. Opolskiej, Opole, 7-23
- Ligus G., Ignasiak K., (2010). Wykorzystanie cyfrowej anemometrii obrazowej do analizy segregacji cząstek monodyspersyjnych pod kątem zastosowań w gospodarce odpadami. Pr. Inst. Ceramiki i Materiałów Budowlanych. 6, 104-113
- Niedostatkiewicz M., (2010). Zastosowanie metody PIV (Particle Image Velocimetry) do opisu procesu opróżniania silosu. *Acta Agrophysica*, 16(1), 111-126
- Sherrington P. J., Oliver R, (1981). *Globulation processes in granulation*. Heyden and Son ltd, London, 118-140. wg Ghasemi Y. i in. (2013)
- Suchecki W., Alabrudziński S., (2003a). Metoda korekty wykresów pól prędkości w cyfrowej anemometrii obrazowej. Inż. Ap. Chem., 3, 14-20
- Suchecki W., Alabrudziński S., (2003b). Metoda analizy pola prędkości z uwzględnieniem istnienia dużych obiektów w przepływie. *Inż. Ap. Chem.*, 5, 6-13
- Sun Y., Dong M., Mao Y., Fan, D., (2009). Analysis on grinding media motion in ball mill by discrete element method. Proc. of the 1st Int. Conf. on Manufacturing Engineering, Quality and Production Systems, September 24-26, Brasov, Romania, 1, 227-231
- Zając D., Ulbrich R., (2002). Badanie przepływu mieszaniny gaz-ciecz w kolumnie pęcherzykowej z zastosowaniem metody cyfrowego przetwarzania obrazu [w:] Ulbrich R. (red.), Rozpoznanie obrazu w zastosowaniach do badań przepływu mieszanin dwufazowych. Wyd. Pol. Opolskiej, Opole, 91-124
- Zając D., Ulbrich R., (2005). Nieinwazyjne metody badań przepływów dwufazowych gaz-ciecz. Wyd. Pol. Opolskiej, Opole

Czasopismo naukowo-techniczne INŻYNIERIA I APARATURA CHEMICZNA

Chemical Engineering and Equipment

ukazuje się od 1961 roku

Czasopismo jest poświęcone problemom obliczeń procesowych i zagadnieniom projektowokonstrukcyjnym aparatury i urządzeń stosowanych w przemysłach przetwórczych, w tym szczególnie w przemyśle chemicznym, petrochemicznym, rolno-spożywczym, jak również w energetyce, gospodarce komunalnej i w ochronie środowiska.

Przeznaczone jest zarówno dla pracowników badawczych, projektantów, konstruktorów, jak i dla menadżerów oraz inżynierów ruchowych.

W czasopiśmie publikowane są artykuły naukowe o szerokim spektrum tematycznym, obejmującym problematykę procesów i operacji jednostkowych inżynierii chemicznej, bio- i nanotechnologie. inżynierię biomedyczną, recykling, bezpieczeństwo procesowe oraz obliczenia i projektowanie aparatów w aspekcie poprawy wydajności, lepszego wykorzystania surowców, oszczędności energii i ochrony środowiska.

Publikowane prace są recenzowane przez specjalistów. Autorzy artykułów opublikowanych w "Inżynierii i Aparaturze Chemicznej" uzyskują 7 punktów (od 2015 r.) do oceny parametrycznej Ministerstwa Nauki i Szkolnictwa Wyższego.