Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a graph G its distance vertex irregularity strength is the smallest integer k for which one can find a labeling f : V (G) → {1, 2, . . . , k} such that [formula] for all vertices u, v of G, where N(v) is the open neighborhood of v. In this paper we present some upper bounds on distance vertex irregularity strength of general graphs. Moreover, we give upper bounds on distance vertex irregularity strength of hypercubes and trees.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
561--571
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
- Technical University, Department of Applied Mathematics and Informatics, Košice, Slovakia
Bibliografia
- [1] M. Anholcer, S. Cichacz, D. Froncek, R. Simanjuntak, J. Qiu, Group distance magic and antimagic hypercubes, Discrete Math. 344 (2021), 112625.
- [2] M. Bača, A. Semaničová-Feňovčíková, Slamin, K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. 6 (2018), no. 1, 61–83.
- [3] T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki, W. Żelazny, Additive coloring of planar graphs, Graphs Combin. 30 (2014), 1087–1098.
- [4] N.H. Bong, Y. Lin, Slamin, On distance irregular labelings of cycles and wheels, Australas. J. Comb. 69 (2017), no. 3, 315–322.
- [5] N.H. Bong, Y. Lin, Slamin, On inclusive and non-inclusive vertex irregular d-distance vertex labelings, J. Combin. Math. Combin. Comput. 113 (2020), 233–247.
- [6] G. Chartrand, M.S. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187–192.
- [7] S. Cichacz, D. Froncek, K. Sugeng, S. Zhou, Group distance magic and antimagic graphs, Acta Math. Sin. (Engl. Ser.) 32 (2016), 1159–1176.
- [8] S. Cichacz, A. Görlich, A. Semaničová-Feňovčíková, Upper bounds on inclusive distance vertex irregularity strength, Graphs Combin. 37 (2021), 2713–2721.
- [9] S. Czerwiński, J. Grytczuk, W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009), 1078–1081.
- [10] P. Gregor, P. Kovář, Distance magic labelings of hypercubes, Electronic Notes in Discrete Math. 40 (2013), 145–149.
- [11] R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, 2nd ed., Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2011, with a foreword by Peter Winkler.
- [12] M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Comb. Theory Ser. B 91 (2004), 151–157.
- [13] M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Comb. 28 (2003), 305–315.
- [14] Slamin, On distance irregular labelings of graphs, Far East J. Math. Sci. 102 (2017), no. 5, 919–932.
- [15] F. Susanto, K. Wijaya, Slamin, A. Semaničová-Feňovčíková, Distance irregularity strength of graphs with pendant vertices, Opuscula Math. 42 (2022), no. 3, 439–458.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dac25b2-f5f6-4c28-a815-1af8361cb373