PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Analysis of Precipitation Process of MX-type Phases in High Strength Low Alloy Steels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of thermodynamic analysis of precipitation process of MX-type interstitial phases in austenite. The subject of the investigation were two newly developed high strength low alloy microalloyed steels with similar concentration of C and N and with diversified amount of Nb, Ti and V microadditions. Thermodynamic analysis of the state of phase equilibrium of structural constituents, taking into consideration the austenite of investigated microalloyed steels, was mainly focused on analytic calculations of chemical composition of austenite and the content and chemical composition of potential MX-type interstitial phases (M – metal, X – metalloid) as a function of heating or cooling temperature. The analysis of precipitation process of complex carbonitrides in austenite under thermodynamic equilibrium conditions has allowed to define stoichiometric compositions of carbonitrides as a function of temperature along with determination of their volume portion. This study was based on the model proposed by Hillert and Staffanson, which was subsequently developed by Adrian. The results of performed investigation can be used to develop the appropriate parameters of thermomechanical treatment of metallurgical products from the tested HSLA-type steels.
Twórcy
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Adrian H.: Thermodynamic model for precipitation of carbonitrides in high strength low alloyed steels up to three microalloying elements with or without additions of aluminium. Materials Science and Technology 8, 1992, 406–420.
  • 2. Adrian H.:Thermodynamic calculations of carbonitride precipitation as a guide for alloy design of microalloyed steels. Proceedings of the International Conference “Microalloying’95”, Pittsburgh, USA 1995, 285–305.
  • 3. Adrian H., Głowacz E., Augustyn-Pieniążek J., Matusiewicz P., Marynowski P.: Kinetics of carbonitrides precipitation in microalloyed steels. Proceedings of the Conference „Polish Metalurgy in 2011-2014 years“, Polish Metallurgy Commitee, Kraków, Poland, 2014, 837–854.
  • 4. Babakhani A., Ziaei S.M.R., Kiani-Rashid A.R.: Investigation on the effects of hot forging parameters on the austenite grain size of vanadium microalloyed forging steel (30MSV6). Journal of Alloys and Compounds 490, 2010, 572–575.
  • 5. Bakkali F., Chanaoui A., Dkiouak R., Elbakkali L., Al Omar A.: Characterization of deformation stability of medium carbon microalloyed steel during hot forging using phenomenological and continuum criteria. Journal of Materials Processing Technology 199, 2008, 140–149.
  • 6. Błoniarz R., Majta J., Trujillo C., Cerreta E., Muszka K.: The mechanism for strengthening under dynamic loading for low carbon and microalloyed steel. International Journal of Impact Engineering 114, 2018, 53–62.
  • 7. Caminaga C., Botta Filho W.J., Silva M.L.N.: Strengthening mechanism of 27MnSiVS6 microalloyed steel deformed by four different forging processes. Procedia Engineering 10, 2011, 512–517.
  • 8. Chen C.Y., Chen S., Chen Ch., Yang J.: Control of precipitation morphology in the novel HSLA steel. Materials Science and Engineering A 634, 2015, 123–133.
  • 9. Chen C.Y., Liao M.H.: Synergistic effects of carbon content and Ti/Mo ratio on precipitation behavior of HSLA steel: insights from experiment and critical patent analysis. Materials & Design 186, 2020, 108361.
  • 10. Chen C.Y., Yen H.W., Kao F.H., Li W.C., Huang C.Y., Wang S.H.: Precipitation hardening of high-strength low-alloy steels by nanometr-sized carbides. Materials Science and Engineering A 499, 2009, 162–166.
  • 11. Clark S., Janik V., Rikenberg A.: Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the g/a transformation. Materials Characterization 115, 2016, 83–89.
  • 12. Dong L., Liu C., Liu Y., Li C., Guo Q., Li H.: Effect of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel. Fusion Engineering and Design 125, 2017, 415–422.
  • 13. Gladman T. The Physical Metallurgy of Microalloyed Steels. The University Press, Cambridge, 1997.
  • 14. Gui L, Long M., Zhang H., Chen D., Liu S., Wang Q., Duan H.: Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model. Journal of Materials Research and Technology 9(3), 2020, 5499–5514.
  • 15. Gündüz S., Cochrane R.C.: Clustering effect on high temperature tensile behavior of vanadium microalloyed steel. Journal of Materials Processing Technology 186, 2007, 246–252.
  • 16. Hillert M., Staffansson L.I.: The regular solution model for stoichiometric phases and ionic melts. Acta Chemica Scandinavica 24, 1970, 3618–3636.
  • 17. Ji D., Chenxi L., Yongchang L., Chong L., Qianging G., Huijun L.: Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-VTi microalloyed ultra-high strength steel. Fusion Engineering and Design 125, 2017, 415–422.
  • 18. Klinkerberg K., Hulka K., Bleck W.: Niobium carbide precipitation in microalloyed steel. Steel Research 75, 2004, 744–752.
  • 19. Krawczyk J., Adrian H.: The kinetic of austenite grain growth in steel for wind power plant shafts. Archives of Metallurgy and Materials 55, 2010, 91–99.
  • 20. Kuziak R., Bołd T., Chen Y.: Microstructure control of ferrite-peralite high strength low alloy steels utilizing microalloying additions. Journal of Materials Processing Technology 53, 1995, 255–262.
  • 21. Lin H.R., Hendrikson A.A.: The prediction of precipitation strengthenning in microalloyed steels. Metallurgical Transactions 19, 1988, 1471–1480.
  • 22. Liu W.J., Jonas J.J.: Calculation of the Ti(CyN1y)-Ti4C2S2-MnS austenite equilibrium in Ti-bearing steels. Metallurgical Transactions 20, 1989, 1361–1374.
  • 23. Liu Z.: Thermodynamic calculations of carbonitrides in microalloyed steels. Scripta Materialia 50(5), 2004, 601–606.
  • 24. Lourenço N.J., Jorge A.M., Rollo J.M.A., Balancin O.: Plastic behavior of medium carbon vanadium microalloyed steel at temperatures near g’a transformation. Materials Research, 3, 2001, 149–156.
  • 25. Marynowski P., Adrian H., Głowacki M., Woźny K., Koclęga D.: Modeling of the kinetics of carbonitrides precipitation proces in microalloyed steels. Proceedings of the 27th International Conference on Metallurgy and Materials “Metal”, Brno, Czech Republic, 2018, 783–788.
  • 26. Matlock D.K., Krauss G., Sperr J.G.: Microstructure and properties of direct-cooled microalloy forging steels. Journal of Materials Processing Technology 117, 2001, 324–328.
  • 27. Melloy G.F., Slimmon P.R., Podgursky P.P.: Optymising the boron effect. Metallurgical Transactions 4, 1973, 2279–2289.
  • 28. Oliveria A.P., Gonzales B.M.: The engineering behind the mechanical properties enhancement on HSLA steels, microalloyed with niobium: effect of boron and titanium. Journal of Materials Research and Technology 9(4), 2020, 9372–9379.
  • 29. Opiela M.: Thermomechanical treatment of TiNb-V-B micro-alloyed steel forgings. Materiali in Tehnologije 48(4), 2014, 587–591.
  • 30. Opiela M., Grajcar A.: Elaboration of forging conditions on the basis of the precipitation analysis of MX-type phases in microalloyed steels. Archives of Civil and Mechanical Engineering 12(4), 2012, 427–435.
  • 31. Opiela M., Grajcar A.: Microstructure and anisotrophy of plastic properties of thermomechanicallyprocessed HSLA-type steel. Metals 8(5), 2018, 1–15.
  • 32. Padmanabhan K.A., Sankaran S.: Fatigue behavior of a multiphase medium carbon V-bearing microalloyed steel processed through two thermomechanical routes. Journal of Materials Processing Technology 207, 2008, 293–300.
  • 33. Pandit A., Murugaiyan A., Saha A., Haldar A., Bhattacharjee D., Chandra S. Ray R.K.: Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels. Scripta Materialia 53(11), 2005, 1309–1314.
  • 34. Ramachandran D., Moon J., Lee Ch., Kim S., Chung J., Biro E., Park Y.: Role of bainite microstructures with M-A constituent on the toughness of an HSLA steel for seismic resistant structural application. Materials Science and Engineering A 801(13), 2021, 140390.
  • 35. Sanz L., Pereda B., López B.: Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Materials Science and Engineering A 685(8), 2017, 377–390.
  • 36. Skubisz P., Lisiecki Ł., Micek P.: Effect of direct cooling conditions on characteristic of drop forged Ti+V+B microalloy steel. Procedia Manufacturing 2, 2015, 428–433.
  • 37. Skubisz P., Sińczak J., Skowronek T., Rumiński M.: Selection of direct cooling conditions for automotive lever made of microalloyed steel. Archives of Civil and Mechanical Engineering 12, 2012, 418–426.
  • 38. Speer J.G., Michael J.R., Hansen S.S.: Carbonitride precipitation in niobium/vanadium microalloyed steels. Metallurgical and Materials Transaction A 18, 1987, 211–222.
  • 39. Spena P.R., Firrao D.: Thermomechanical warm forging of Ti-V, Ti-Nb and Ti-B microalloyed medium carbon steels. Materials Science and Engineering A 560, 2013, 208–215.
  • 40. Strid J., Easterling K.E.: On the chemistry and stability of complex carbides and nitrides in microalloyed steels. Acta Materialia 35, 1985, 2057–2074.
  • 41. Wang J., Hodgson P.D., Bikmukhametor I., Miller M.K., Timokhina I.: Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels. Materials Design 141, 2018, 48–56.
  • 42. Wang Z., Sun Y., Zhou Y., Yang Z., Jiang F.: Microstructure, precipitation and mechanical properties of a titanium-tungsten alloyed hot rolled high strength steel. Materials Science and Engineering A 718, 2018, 56–63.
  • 43. Webel J., Herges A., Britz D., Detemple E., Flaxa V., Mohrbacher H., Mücklich F.: Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning. Metals 10(2), 2020, 243.
  • 44. Zhao F., Hu H., Liu X., Zhang Z., Xie J.: Effect of billet microstructure and deformation on austenite grain growth in forging heating of a medium-carbon microalloyed steel. Journal Alloys and Compounds 869, 2021, 159326.
  • 45. Zhao F., Jiang B., Xie J., Liu Y.: The optimized microstructure and properties of a V-Ti microalloyed forging steel by boron addition. Materials Letters 236(1), 2019, 440–443.
  • 46. Zheng W., Yan X., Xion S., Wang G., Li G.: Pitting corrosion behavior of cerium treated HSLA steel induced by sulfide inclusions in 3.5 wt% NaCl solution. Journal of Rare Earths 39(3), 2021, 348–356.
  • 47. Zheng Y., Li X., Liu Y., Liu C., Dong L., Li H: Study of the kinetics of austenite grain growth by dynamic Ti-rich carbonitride dissolution in HSLA steel: in-situ obserwation and modeling. Materials Characterization 169, 2020, 110612.
  • 48. ASTM E112-10, Standard test methods for determining average grain size. ASTM International, West Conshohocken, PA, 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8daa6110-346f-4ff1-997c-d2d2bf183c9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.