PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal metamorphic evolution of the Pułtusk H chondrite breccia – compositional and textural properties not included in petrological classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal history that chondrites experienced on their parent body is an aspect of their petrological classification. However, in the classification scheme, metamorphic conditions are generally limited to the peak metamorphic temperature attained, while it is known that reconstruction of the genuine thermal evolution of any rock requires identification of various metamorphic factors, definition of the temperature-time path during metamorphism and characterization of the processes responsible for heating. Study of the brecciated Pułtusk H chondrite shows that the meteorite comprises both low and high petrologic type material and should be classified as a H3.8–6 chondrite. Based on the textures and mineral and chemical composition, the thermal metamorphic history of the breccia is reconstructed and it is shown to be inconsistent with the petrologic classification; the textural maturation and degree of compositional equilibrium in the meteorite do not correspond to the temperatures attained. The metamorphic conditions are shown to be a function of the primary composition of the accreted minerals and of two metamorphic phases, progressive and retrogressive. First, a prograde phase led to textural maturation and equilibration of the chemical composition of silicates and oxides. The peak metamorphic temperatures were at least ~700ºC for the type 3.8. and 4 material, and up to ~1000ºC in H6 clasts i.e., sufficient to locally give rise to partial melting. The following retrograde metamorphism led to compositional re-equilibration of minerals and textural re-equilibration of minerals with partial melts. The cooling rate during retrograde metamorphism down to at least ~700ºC was low, which allowed potassium feldspar to form patches in Na-plagioclase and pseudobrookite-armalcolite breakdown to form an association of ilmenite and rutile. The two-phase metamorphic evolution of the Pułtusk breccia was the most likely the result of impact heating, which affected the parent body in its very early history.
Rocznik
Strony
211--224
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, Podwale 75, 50-449 Wrocław, Poland
  • Natural History Museum, Department of Earth Sciences, Cromwell Road, London SW7 5BD, United Kingdom
Bibliografia
  • 1. Binns, R.A., 1968. Cognate xenoliths in chondritic meteorites: Examples in Mezö-Madaras and Ghubara. Geochimica et Cosmochimica Acta, 32: 299-317.
  • 2. Bischoff, A., Keil, K., 1984. Al-rich objects in ordinary chondrites. Geochimica et Cosmochimica Acta, 48: 693-709.
  • 3. Bogard, D.D., 2011. K-Ar ages of meteorites: clues to parent-body thermal histories. Chemie der Erde, 71: 207-226.
  • 4. Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J.J., Albaréde, F., 2007. Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71: 1583-1604.
  • 5. Brearley, A.J., Jones, R.H., 1998. Chondritic meteorites. Reviews in Mineralogy, 36: 3-1-3-398.
  • 6. Bunch, T.E. Keil, K., Snetsinger, K.G., 1967. Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochimica et Cosmochimica Acta, 31: 1605-1613.
  • 7. Buseck, P.R., Iljima, A., 1975. High Resolution Electron Microscopy of Enstatite. II: Geological Application. American Mineralogist, 60: 771-784.
  • 8. Buseck, P.R., Keil, K., 1966. Meteoritic rutile. American Mineralogist, 51: 1506-1515.
  • 9. Ciesla, F.J., Davison, T.M., Collins, G.S., O'Brien, D.P., 2013. Thermal consequences of impacts in the early solar system. Meteoritics and Planetary Science, 48: 2559-2576.
  • 10. Davison, T.M., O'Brien, D.P., Ciesla, F.J., Collins, G.S., 2013. The early impact histories of meteorite parent bodies. Meteoritics and Planetary Science, 48: 1894-1918.
  • 11. Dodd, R.T., 1969. Metamorphism of ordinary chondrites: A review. Geochimica et Cosmochimica Acta, 33: 161-203.
  • 12. Friedrich, J.M., Perrotta, G.C., Kimura, M., 2014. Compositions, geochemistry, and shock histories of recrystallized LL chondrites. Geochimica et Cosmochimica Acta, 139: 83-97.
  • 13. Fudali, R.F., Noonan, F., 1975. Gobabeb, a new chondrite: the coexistence of equilibrated silicates and unequilibrated spinels. Meteoritics, 10: 31-39.
  • 14. Ganguly, J., Tirone, M., Chakraborty, S., Domanik, K., 2013. H chondrite parent asteroid: a multistage cooling, fragmentation and re-accretion history constrained by thermometric studied, diffusion kinetic modeling and geochronological data. Geochimica et Cosmochimica Acta, 105: 206-220.
  • 15. Gattacceca, J., Suavet, C., Rochette, P., Weiss, B.P., Winklhofer, M., Uehara, M., Friedrich, J., 2014. Metal phases in ordinary chondrites: magnetic hysteresis properties and implications for thermal history. Meteoritics and Planetary Science, 49: 652-676.
  • 16. Grimm, R.E., 1985. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies. Journal of Geophysical Research, 90: 2022-2028.
  • 17. Grossman, J.N., Brearley, A.J., 2005. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics and Planetary Science, 40: 87-122.
  • 18. Guignard, J., Toplis, M.J., 2015. Textural properties of iron-rich phases in H ordinary chondrites and quantitative links to the degree of thermal metamorphism. Geochimica et Cosmochimica Acta, 149: 46-63.
  • 19. Harrison, K.P., Grimm, R.E., 2010. Thermal constrains on the early history of the H-chondrite parent body reconsidered. Geochimica et Cosmochimica Acta, 74: 5410-5423.
  • 20. Hayob, J.L., Essene, E.J., 1995. Armalcolite in crustal paragenesis xenoliths, central Mexico. American Mineralogist, 80: 810-822.
  • 21. Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W.H., Kleine, T., 2012. Thermal history modeling of the H chondrite parent body. Astronomy and Astrophysics, 545: A135.
  • 22. Huss, G.R., Rubin, A.E., Grossman, J.N., 2006. Thermal metamorphism in chondrites. Meteorites and the Early Solar System II. In: Meteorites and the Early Solar System II (eds. D.S. Lauretta and H.Y McSween, Jr.): 567-586. The University of Ari zona Press.
  • 23. Irvine, T.N., 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences, 2: 648-672.
  • 24. Johnson, C.A., Prinz, M., 1991. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites: Implications for thermal histories and group differences. Geochimica et Cosmochimica Acta, 55: 893-904.
  • 25. Kessel, R., Beckett, J.R., Stolper, E.M., 2007. The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochimica et Cosmochimica Acta, 71: 1855-1881.
  • 26. Kimura, M., Ikeda, Y., Ebihara, M., Prinz, M., 1991. New enclaves in Vaca Muerta mesosiderite: petrogenesis and comparison with HED meteorites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 4: 263-306.
  • 27. Kimura, M., Hiyagon, H., Palme, H., Spettel, B., Wolf, D., Clayton, R.N., Mayeda, T.K., Sato, T., Suzuki, A., Kojima, H., 2002.
  • 28. Yamato 792947, 793408 and 82038: The most primitive H chondrites, with abundant refractory inclusions. Meteoritics and Planetary Science, 37: 1417-1434.
  • 29. Kimura, M., Nakajima, H., Hiyagon, H., Weisberg, M.K., 2006. Spinel group minerals in LL3.00-6 chondrites: Indicators of nebular and parent body processes. Geochimica et Cosmochimica Acta, 70: 5634-5650.
  • 30. Kimura, M., Grossman, J.N., Weisberg, M.K., 2008. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteoritics and Planetary Science, 43: 1161-1177.
  • 31. Kovach, H.A., Jones, R.H., 2010. Feldspar in type 4-6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies. Meteoritics and Planetary Science, 45: 246-264.
  • 32. Krzesińska, A., 2011. High reso l ution X-ray tomography as a tool for analysis of internal textures in meteorites. Meteorites: 1, 3-12.
  • 33. Krzesińska, A., Fritz, J., 2014. Weakly shocked and deformed CM microxenoliths in the Pułtusk H chondrite. Meteoritics and Planetary Science, 49: 595-610.
  • 34. Krzesińska, A., Gattacceca, J., Friedrich, J.M., Rochette, P., 2015. Impact-related non-coaxial deformation in the Pułtusk H chondrite inferred from petrofabric analysis. Meteoritics and Planetary Science, 50: 401-417.
  • 35. Lux, Y., Keil, K., Taylor, G.J., 1980. Metamorphism of the H-group chondrites: implications from compositional and textural trends in chondrules. Geochimica et Cosmochimica Acta, 44: 841-855.
  • 36. MacPherson, G.J., Huss, G.R., 2005. Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochimica et Cosmochimica Acta, 69: 3099-3127.
  • 37. Manecki, A., 1972. Mineralogical and petrological study of the Pułtusk meteorite (in Polish with English summary). Mineralogical Transactions 2: 53-65.
  • 38. Matsunami, S., Nishimura, H., Takeshi, H., 1990. The chem l cal compositions and textures of malrices and chondrule rims of unequilibrated ordinary chondrites - II. Thier constituent and the implications for the formation of matrix olivine. Proceedings NIPR Symposium of Antarctic Meteorites, 3: 147-180.
  • 39. Merlet, C., Llovet, X., Salvet, F., 2003. Electron probe microanalysis today. Practical aspects. Proceedings of the Eight European EMAS Workshop Karlsruhe: 317.
  • 40. Miyamoto, M., Fuji, N., Takeda, H., 1981. Ordinary chondrite parent body: An internal heat l ng model. 12th Lunar and Planetary Science Conference abstracts: 1145-1152.
  • 41. Pellas, R., Storzer, D., 1981. 244Pu fission track thermometry and its application to stony meteorites. Proceedings of Royal Society London Ser. A, 374: 253-270.
  • 42. Rubin, A.E., 1990. Kamacite and ollvlne in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta, 54: 1217-1232.
  • 43. Rubin, A.E., 1995. Petrologic evidence for collisional heating of chondritic asteroids. Icarus, 113: 156-167.
  • 44. Sack, R.O., Ghiorso, M.S., 1991. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist, 76: 827-847.
  • 45. Scott, E.R.D., Krot, T.V., Goldstein, J.I., Wakita, S., 2014. Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constrains from metallic Fe-Ni. Geochimica et Cosmochimica Acta, 136: 13-37.
  • 46. Sears, D.W.G., Dodd, R.T., 1988. Overview and classification of meteorites. In: Meteorites and the Early Solar System (eds. J.F. Kerridge and M.S. Matthews): 3-31. University of Arizona Press; Tucson, Arizona.
  • 47. Siemiątkowski, J., 2004. Chondryt Pułtusk: przykład meteorytowej brekcji wieloskładnikowej (H4+H5). Meteoryt, 4: 26-28.
  • 48. Stöffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55: 3845-3867.
  • 49. Suzuki, A., Yasuda, A., Ozawa, K., 2005. Cr-Al diffusion in chromite spinel at high-pressure. EOS Trans AGU Fall Meeting, 86: V13A-0521.
  • 50. Swindle, T.D., Isachsen, C.E., Weirich, J.R., Kring, D.A., 2009. 40Ar-39Ar ages of H-chondrite impact melt breccias. Meteoritics and Planetary Science, 44: 747-762.
  • 51. Tait, A.W., Tomkins, A.G., Godel, B.M., Wilson S.A., Hasalova, P., 2014. Inves tigation of the H7 ordinary chondrite, Watson 012: Implications for recognition and classification of Type 7 meteorites. Geochimica et Cosmochimica Acta, 134: 175-196.
  • 52. Takeda, H., Hutson, T.J., Lipschutz, M.E., 1984. On the chondrite-achondrite transition: mineralogy and chemistry of Yamato 74160 (LL7). Earth and Planetary Science Letters, 71: 329-339.
  • 53. Tomkins, A.G., 2009. What metal-troilite textures can tell us about post-impact metamorphism in chondrite meteorites. Meteoritics and Planetary Science, 44: 1133-1149.
  • 54. Trieloff, M., Jessberger, E.K., Herrwerth, I., Hopp, J., Fiéni, C., Ghélis, M., Bourot-Denise, M., Pellas, P., 2003. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422: 502-506.
  • 55. Van Schmus, W.R., Wood, J., 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31: 747-765.
  • 56. Wlotzka, F., 2005. Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteoritics and Planetary Sciences, 40: 1673-1702.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da64bf5-9ad3-43e8-b56a-4b8d98f3b34d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.