PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of geotechnical, geological and mining factors on the formation of sinkholes at Lubambe mine, Zambia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining-induced sinkholes are a common feature in underground mines. Sinkholes usually disrupt mining operations and associated infrastructure when they occur. This paper presents a case study of the Lubambe copper mine, where nine (9) sinkholes have been reported on the eastern and southern limbs. The development of sinkholes has resulted in increased mining costs due to the closure of the 182 mL decline on the eastern limb and the 175 mL truck route on the southern limb. This study establishes the influence that poor ground formation, rock stability, geological structures, and inappropriate mining practices have on the formation of surface sinkholes. Assessment of ground condition was done by core logging, and borehole analysis was conducted using GEM4D-BasRock software to classify the rock mass quality based on RQD, RMR, Q-System and GIS. Assessment of the mining operational environment was focused on the effects of varying stope designs and sequencing on ground stability. Results of the study indicate that the formation of surface-induced sinkholes is attributed to historical mining in weak rock formation and weathered rock coupled with subsequent failure of unsupported stopes with stope height between 8 and 25 metres and less stand-up time of 7 days.
Rocznik
Strony
231--251
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • University of Zambia
  • National University of Water and Nature, Ukraine
  • University of Zambia
  • University of Zambia
Bibliografia
  • [1] A.H. Cooper, A.C. Waltham, Subsidence caused by gypsum dissolution at Ripon, North Yorkshire. QuarterlyJournal of Engineering Geology and Hydrogeology 32 (4), 305-310 (1999).DOI: https://doi.org/10.1144/GSL.QJEG.1999.032.P4.01.
  • [2] F . Gutiérrez, A.H. Cooper, Evaporite dissolution subsidence in the historical city of Calatayud, Spain: damageappraisal and prevention. Natural Hazards 25, 259-288 (2002). DOI: https://doi.org/10.1023/A:1014807901461.
  • [3] A. Humnabadkar, Preventing Sinkholes in Mining: Recent Development in the Industry. Available at: https://www.azomining.com/Article.aspx?ArticleID=1696. Accessed: 05/03/2023.
  • [4] P. Sahu, R.D. Lokhande, An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground CoalMining. Procedia Earth and Planetary Science 11, 63-75 (2015). DOI: https://doi.org/10.1016/j.proeps.2015.06.009.
  • [5] N .V. Hoang, H.V. Hung, T.Q. Cuong, Characteristics and Affecting Factors of Sinkhole Development in Cho DonArea, Bac Kan Province, Vietnam. IOP Conf. Ser.: Earth Environ. Sci. 690012025.DOI : https://doi.org/10.1088/1755-1315/690/1/012025.
  • [6] G. Newton, Development of sinkholes resulting from man’s activities in the Eastern United States. Circular 968,Report, USA. DOI: https://doi.org/10.3133/cir968.
  • [7] G.R. Khanlari, H. Mojtaba, A.A. Momeni, A. Mohemed, A.T. Beydokhti, The effect of groundwater overexploitationon land subsidence and sinkhole occurrences, West of Iran. Quarterly J. of Eng. Geo. and Hydrogeo 45 (4),447-456 (2012). DOI: https://doi.org/10.1144/qjegh2010-069.
  • [8] P. Williams, Dolines. In: Gunn J. (ed.) Encyclopedia of caves and karst science, Fitzroy Dearborn, New York, pp.304-31 (2003).
  • [9] B .F. Beck, Soil piping and sinkhole failures. In: White WB (ed.) Encyclopedia of Caves. Elsevier: New York, pp.523-528 (2004).
  • [10] T . Waltham, F. Bell, M. Culshaw, Sinkholes and subsidence: Karst and Cavernous Rocks in Engineering andConstruction. Springer Berlin, Heidelberg, 382 pp, (2005).
  • [11] F . Gutiérrez, A.H. Cooper, K.S. Johnson, Identification, prediction and mitigation of sinkhole hazards in evaporitekarst areas. Environmental Geology 53, 1007-1022 (2008). DOI: https://doi.org/10.1007/s00254-007-0728-4.
  • [12] F . Rupert, S. Spencer, Florida Sinkholes. Florida Geological Survey, Poster 11. Florida Geological Survey, FloridaDepartment of Environmental Protection, Tallahassee, Florida. (2004). Accessed 07/06/2023. Availableat: https://aquadocs.org/bitstream/handle/1834/18557/Poster11.pdf?sequence=1&isAllowed=y.
  • [13] F .S. Ebrahim, A numerical investigation of the mechanisms of post-mining subsidence. PhD Thesis, The Universityof Newcastle, Australia (2016). Available at https://nova.newcastle.edu.au/vital/access/%20/manager/Repository/uon:27428?view=null&f. Accessed: 15/12/2022.
  • [14] A.C Waltham, G.M. Swift, Bearing capacity of rock over mined cavities in Nottingham. Engineering Geology 75,15-31 (2004). DOI: http://dx.doi.org/10.1016/j.enggeo.2004.04.006.
  • [15] J. Taylor, R. Fowell, Statistical associations concerning the life of coal pillars. Proceedings of the Post-Mining2008, Nancy, 1-7 (2008).
  • [16] R .F. Bekendam, Pillar stability and large-scale collapse of abandoned limestone room and pillar mines in South-Limburg, The Netherlands, PhD-thesis TU Delft (1998). Available at: http://resolver.tudelft.nl/uuid:bfe483a5-312e-4213-ab45-1e75a147b1f2. Accessed 06/05/2023.
  • [17] C . Didier, The French experience of post-mining management. Symposium Post-Mining 2008. ASGA. Vandoeuvrelès-Nancy, NC (2008).
  • [18] C . Didier, R. Salmon, Assessment of the risk of a sinkhole appearing on a surface: A probabilistic volumetricmodel. National days of Geotechnics and Geology, Lile, France, pp. 441-451 (2004). Available at: https://ineris.hal.science/ineris-00972467/document. Accessed on 17/04/2023.
  • [19] G. Swift, D. Reddish, Stability problems associated with an abandoned ironstone mine. Bull. Eng. Geol. Environ.61, 227-239 (2002). DOI: https://doi.org/10.1007/s10064-001-0147-9.
  • [20] D . Sandhu, Implications of Groundwater Plume Transport and Analysis of Karst Aquifer Characteristics in CentralFlorida. (2019). Electronic Theses and Dissertations. 6575 (2019). Available at: https://stars.library.ucf.edu/etd/6575. Accessed:30/04/2023.
  • [21] D .U. Deere, D.W. Miller, The Rock Quality Designation (RQD) Index in Practice, Classification Systems forEngineering Purposes. ASTM STP, American Society for Testing and Materials, Philadelphia, PA, 91-101 (1967).DOI: https://doi.org/10.1520/STP48465S.
  • [22] Z.T. Bieniawski, Rock mass classification in rock engineering. In: Bieniawski, Z.T. (Ed.), Exploration for RockEngineering, Proceedings of the Symposium 1. Balkema, Cape Town, pp. 97-106 (1976).
  • [23] Z.T. Beniawaski, Rock Mechanics Design in Mining and Tunneling. A.A. Balkema, 274 (1984).
  • [24] Z.T. Bieniawski, Engineering rock mass classifications. New York: Wiley, (1989).
  • [25] N . Barton, R. Lien, J. Lunde, Engineering classification of Rock Masses for the design of Tunnel support. RockMechanic 6, 189-236, Springer (1974).
  • [26] E. Hoek, E.T. Brown, Practical Estimates of Rock Mass Strength. International Journal Rock Mechanics MiningScience 34, 1165-1186 (1997).
  • [27] M. Fraldi, F. Guarracino, Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections. InternationalJournal of Solids and Structures 47 (2), 216-223 (2010). DOI : https://doi.org/10.1016/j.ijsolstr.2009.09.028.
  • [28] K .E. Mathews, E Hoek, D.C. Wyllie, S. Stewart, Prediction of stable excavation spans for mining at depths below1000 m in hard rock. CANMET DSS Serial No: 0sQ80-00081. Ottawa, (1981).
  • [29] Y . Potvin, Empirical open stope design in Canada. PhD thesis, University of British Columbia, Canada (1988).
  • [30] V. Mutambo, D. Mikoloni, Investing the causes and effects of mining induced subsidence due to sinkholes on thesouthern and eastern limb at Lubambe mine. in: Prospects for developing resource-saving technologies in mineralmining and technologies. Multi-authored monograph – Petrosani, Romania. UNIVERSITETAS publishing, 94-109(2022). DOI: https://doi.org/10.31713/m1105.
  • [31] T . Waltham, Sinkhole Geo-hazards, Geology Today 25 (3), 112-116 (2009).
  • [32] J. Guerrero, F. Gutiérrez, P. Lucha, The impact of halite dissolution subsidence on fluvial terrace development.:The case study of the Huerva River in the Ebro Basin (NE Spain). Geomorphology 100 (1-2), 64-179 (2008).DOI: https://doi.org/10.1016/j.geomorph.2007.04.040.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da4a956-a63f-410a-8044-410b1be9ffb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.