PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light propagation mechanism switching in a liquid crystal infiltrated microstructured polymer optical fibre

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.
Twórcy
  • Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Faculty of New Technologies and Chemistry, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of New Technologies and Chemistry, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • 1. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibres: Properties and Applications, Springer, 2007.
  • 2. M. Large, Microstructured Polymer Optical Fibres, Springer, 2007.
  • 3. A. Argyros, “Microstructured polymer optical fibres”, J. Lightwave Technol. 27, 1571-1579 (2009).
  • 4. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, and C.M. de Sterke, “Microstructured polymer optical fibre”, Opt Expr. 9, 319-327 (2001).
  • 5. J. Anthony, R. Leonhardt, A. Argyros, and M.C. Large, “Characterization of a microstructured Zeonex terahertz fibre”, J. Opt. Soc. Amer. В 28, 1013-1018 (2011).
  • 6. T. Woliński, K. Mileńko, M. Tefelska, K. Rutkowska, А. Domański, S. Ertman, K. Orzechowski, M. Sierakowski, О. Chojnowska, and R. Dąbrowski, “Liquid crystals and polymer-based photonic crystal fibres”, Mol. Cryst. Liq. Cryst. 594, 55-62 (2014).
  • 7. G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fibre”, Opt. Lett. 32, 460-462 (2007).
  • 8. G. Emiliyanov, P.E. Hoiby, L.H. Pedersen, and О. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibres”, Sensors 13, 3242-3251 (2013).
  • 9. M.A. van Eijkelenborg, A. Argyros, and S.G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fibre”, Opt. Lett. 33, 2446-2448 (2008).
  • 10. A. Argyros, M.A. van Eijkelenborg, M.C. Large, and I.M. Bassett, “Hollow-core microstructured polymer optical fibre”, Opt. Lett. 31, 172-174 (2006).
  • 11. M.K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbańczyk, and D.J. Webb, “Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fibre”, Opt. Expr. 18, 12076-12087 (2010).
  • 12. M.C. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF)”, Meas. Scien. Techn. 20, 034014 (2009).
  • 13. D.J. Webb, K. Kalli, С. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres”, Proc. SPIE 6990, 69900L (2008).
  • 14. W. Yuan, L. Wei, T.T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibres”, Opt. Expr. 17, 19356-19364 (2009).
  • 15. T. Martynkien, P. Mergo, and W. Urbańczyk, “Sensitivity of birefringent microstructured polymer optical fibre to hydrostatic pressure”, IEEE Phot. Techn. Lett. 25, 1562-565 (2013).
  • 16. I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H.K. Rasmussen, L. Khan, D.J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer”, Electron. Lett. 47, 271-272 (2011).
  • 17. H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C. Large, and M.A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fibre Bragg gratings in few-and single-mode microstructured polymer optical fibres”, Opt. Lett. 30, 3296-3298 (2005).
  • 18. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fibre Bragg gratings in few-mode polymer optical fibres”, IEEE Phot. Techn. Lett. 23, 660-662 (2011).
  • 19. C. Markos, W. Yuan, K. Vlachos, G.E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibres”, Opt. Expr. 19, 7790-798 (2011).
  • 20. S. Baumer, Handbook o f plastic optics, John Wiley & Sons, 2011.
  • 21. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer Zeonex”, Proc. SPIE 66711, 667111-667111-9 (2007).
  • 22. S. Cerqueira Jr, F. Luan, C. Cordeiro, A. Geoge, and J. Knight, “Hybrid photonic crystal fibre”, Opt. Еxpr. 1, 926-931 (2006).
  • 23. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres”, Opt. Expr. 11, 2589-2596 (2003).
  • 24. T. Woliński, K. Szaniawska, S. Ertman, P. Lesiak, A. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres”, Meas. Scien. Techn. 17, 985 (2006).
  • 25. L. Wei, T.T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fibre filled with liquid crystal”, Appl. Phys. Lett. 96, 241104 (2010).
  • 26. L. Wei, T.T. Alkeskjold, and A. Bjarklev, “Electrically tunable bandpass filter using solid-core photonic crystal fibres filled with multiple liquid crystals”, Opt. Lett. 35, 1608-610 (2010).
  • 27. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T.T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fibre devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibres”, Appl. Opt. 48, 497-503 (2009).
  • 28. T. Woliński, M. Tefelska, K. Mileńko, A. Siarkowska, D. Budaszewski, A. Domański, S. Ertman, K. Orzechowski, K. Rutkowska, and M. Sierakowski, “Photonic liquid crystal fibres with polymers”, Acta Phys. Polon. A 124, 613-616 (2013).
  • 29. K. Thingujama, S. Sarkara, B. Choudhurya, and A. Bhattacharjeea, “Effect of temperature on the refractive indices of liquid crystals and validation of a modified four-parameter model”, Acta Phys. Polon. A 122, 754 (2012).
  • 30. N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides”, Opt. Lett. 27, 1592-1594 (2002).
  • 31. A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides”, Opt. Expr. 10, 1320-333 (2002).
  • 32. J. Sun, C. Chan, and N. Ni, “Analysis of photonic crystal fibres infiltrated with nematic liquid crystal”, Opt. Commun. 278, 66-70 (2007).
  • 33. Y. Zhang, L. He, H. Ji, S. Yang, M. Chen, and S. Xie, “Tunable attenuator based on polymer microstructured optical fibres”, Optoelectr. Lett. 3, 47-49 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da415d2-c7c3-4ff8-a408-737a38d619be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.