PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Corrosion of carbonate speleothems by an allogenic river inferred from petrography and a weight loss experiment : a case study from the Demänová Cave System, Slovakia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crystallization of speleothems can be interrupted by the invasion of allogenic water into cave passages. These interruptions were studied, both in speleothems currently submerged in an underground river and in speleothem sections, which were found at the lowermost fluvially active passage level of the Demänová Cave System. The interaction between speleothems and allogenic water, undersaturated with respect to calcite, is manifested in the presence of siliciclastic material and the corrosion of calcite crystals. The progressive development of corrosion features depends on the duration of the interaction of calcite crystals with allogenic water. Moreover, the movement of the water and siliciclastic deposition over the speleothems can influence the corrosion process. The estimated rate of corrosion, caused by the underground Demänovka River and measured by the weight loss of experimental tablets, is up to 0.029 mm/y. U-series dating indicated that the interaction of speleothems with allogenic water occurred during the Vistulian (Weichselian). The identification of corrosion episodes, caused by allogenic water, is a step towards understanding the origin of hiatuses and establishing criteria for recognition of them.
Słowa kluczowe
Rocznik
Strony
467--481
Opis fizyczny
Bibliogr. 75 poz., fot., map., rys., tab.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
autor
  • Department of Geography, Faculty of Education, Catholic University in Ružomberok, Hrabovská cesta 1, 031 04 Ružomberok, Slovakia
  • State Nature Conservancy of the Slovak Republic, Slovak Caves Administration, Hodžova 11, 031 01 Liptovský Mikuláš, Slovakia
Bibliografia
  • 1. Baldini, J. U., McDermott, F., Hoffmann, D. L., Richards, D. A. & Clipson, N., 2008. Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters, 272: 118-129.
  • 2. Bar-Matthews, M., Ayalon, A. & Kaufman, A., 1997. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research, 47: 155-168.
  • 3. Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I., Brown, K., Williams H. M., Bernatchez, J., Ayalon, A. & Nilssen, P. J., 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29: 2131-2145.
  • 4. Bella, P., Gradziński, M., Hercman, H., Leszczyński, S. & Nemec, W., 2021. Sedimentary anatomy and hydrological record of relic fluvial deposits in a karst cave conduit. Sedimentology, 68: 425-448.
  • 5. Bella, P., Haviarová, D., Kováč, E., Lalkovič, M., Sabol, M., Soják, M., Struhár, V., Višňovská, Z. & Zelinka, J., 2014. Caves of the Demänova Valley. Štátna Ochrana Prírody Slovenskej Republiky, Správa Slovenských Jaskýň, Liptovský Mikuláš, 200 pp. [In Slovak, with English summary.]
  • 6. Bernal-Wormull, J. L., Moreno, A., Bartolomé, M., Arriolabengoa, M., Pérez-Mejías, C., Iriarte, E., Osácar, C., Spötl, C., Stoll, H., Cacho, I., Edwards, R. L. & Cheng, H., 2023. New insights into the climate of northern Iberia during the Younger Dryas and Holocene: The Mendukilo multi-speleothem record. Quaternary Science Reviews, 305: 108006.
  • 7. Biely, A., Beňuška, P., Bezák, V., Bujnovský, A., Halouzka, R., Ivanička, J., Kohút, M., Klinec, A., Lukáčik, E., Maglay, J., Miko, O., Pulec, M., Putiš, M. & Vozár, J., 1992. Geological Map of the Nízke Tatry Mountains 1: 50 000. Geologický ústav Dionýza Štúra, Bratislava.
  • 8. Blatnik, M., Culver, D. C., Gabrovšek, F., Knez, M., Kogovšek, B., Kogovšek, J., Liu, H., Mayaud, C., Mihevc, A., Mulec, J., Naparus-Aljančič. M., Otoničar, B., Petrič, M., Pipan, T., Prelovšek, M., Ravbar, N., Shaw, T., Slabe, T., Šebela, S. & Zupan Hajna N., 2020. Measurements of present-day limestone dissolution and calcite recipitation rates with limestone tablets in stream caves (with the case study of Škocjanske Jame). In: Knez, M., Otoničar, B., Petrič, M., Pipan, T. & Slabe, T. (eds), Karstology in the Classical Karst. Advances in Karst Science. Springer, Cham, pp. 115-126.
  • 9. Błaszczyk, M. & Hercman, H., 2022. Palaeoclimate in the Low Tatras of the Western Carpathians during MIS 11-6: Insights from multiproxy speleothem records. Quaternary Science Reviews, 275: 107290.
  • 10. Bosák, P., Hercman, H., Mihevc, A. & Pruner, P., 2002. High resolution magnetostratigraphy of speleothems from Snežna Jama, Kamniške-Savinja Alps, Slovenia. Acta Carsologica, 31: 15-32.
  • 11. Brown, G. H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17: 855-883.
  • 12. Burns, S. J., Fleitmann, D., Matter, A., Neff, U. & Mangini, A., 2001 Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology, 29: 623-626.
  • 13. Cruz, F. W., Jr., Burns, S. J., Jercinovic, M., Karmann, I., Sharp, W. D. & Vuille, M., 2007. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta, 71: 2250-2263.
  • 14. Cruz, F. W., Jr., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L. & Viana, O., Jr., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434: 63-66.
  • 15. Dasgupta, S., Saar, M. O., Edwards, R. L., Shen, C. C., Cheng, H. & Alexander, E. C., Jr., 2010. Three thousand years of extreme rainfall events recorded in stalagmites from Spring Valley Caverns, Minnesota. Earth and Planetary Science Letters, 300: 46-54.
  • 16. Denniston, R. F. & Luetscher, M., 2017. Speleothems as high-resolution paleoflood archives. Quaternary Science Reviews, 170: 1-13.
  • 17. Denniston, R. F., Villarini, G., Gonzales, A. N., Wyrwoll, K. H., Polyak, V. J., Ummenhofer, C. C., Lachniet, M. S., Wanamaker, A. D., Jr., Humphreys, W. F., Woods, D. & Cugley, J., 2015. Extreme rainfall activity in the Australian tropics reflects changes in the El Nino/Southern Oscillation over the last two millennia. Proceedings of the National Academy of Sciences, 112: 4576-4581.
  • 18. Dorale, J. A., Lepley, S. W. & Edwards, R. L., 2005. The ultimate flood recorder: flood deposited sediments preserved in stalagmites. Geophysical Research Abstracts, 7: 09901.
  • 19. Dreybrodt, W. & Buhmann, D., 1991. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 90: 107-122.
  • 20. Droppa, A., 1957. Die Höhlen Demänovské Jaskyne. SAV, Bratislava, 289 pp. [In Slovak, with German summary.] Droppa, A., 1966. The correlation of some horizontal caves with river terraces. Studies in Speleology, 1: 186-192.
  • 21. Droppa, A., 1972. Die geomorphologischen Verhältniosse im Demänovska-Tal. Slovenský Kras, 10: 9-46. [In Slovak, with German abstract.]
  • 22. Droppa, A., 1996. Vplyv ročných období na koróziu Demänovského krasu. In: Lalkovič, M. (ed.), Kras a jaskyne - výskum, využívanie a ochrana, Liptovský Mikuláš, October 10-11, 1995. Zborník referátov z vedeckej konferencie. SMOPaJ, Liptovský Mikuláš, pp. 63-70. [In Slovak, with English summary]
  • 23. Engel, Z., Mentlík, P., Braucher, R., Minár, J., Léanni, L. & Aster Team, 2015. Geomorphological evidence and 10Be exposure ages for the Last Glacial Maximum and deglaciation of the Velká and Malá Studená dolina valleys in the High Tatra Mountains, central Europe. Quaternary Science Reviews, 124: 106-123.
  • 24. Fairchild, I. J. & Baker, A., 2012. Speleothem Science: From Process to Past Environments. John Wiley & Sons, Oxford, 432 pp.
  • 25. Fairchild, I. J., Bradby, L., Sharp, M. & Tison, J. L., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes and Landforms, 19: 33-54.
  • 26. Fairchild, I. J., Killawee, J. A., Hubbard, B. & Dreybrodt, W., 1999. Interactions of calcareous suspended sediment with glacial meltwater: a field test of dissolution behaviour. Chemical Geology, 155: 243-263.
  • 27. Feinberg, J. M., Lascu, I., Lima, E. A., Weiss, B. P., Dorale, J. A., Alexander, E. C., Jr. & Edwards, R. L., 2020. Magnetic detection of paleoflood layers in stalagmites and implications for historical land use changes. Earth and Planetary Science Letters, 530: 115946.
  • 28. Finné, M., Bar-Matthews, M., Holmgren, K., Sundqvist, H. S., Liakopoulos, I. & Zhang, Q., 2014. Speleothem evidence for late Holocene climate variability and floods in Southern Greece. Quaternary Research, 81: 213-227.
  • 29. Finné, M., Kylander, M., Boyd, M., Sundqvist, H. S. & Löwemark, L., 2015. Can XRF scanning of speleothems be used as a non-destructive method to identify paleoflood events in caves? International Journal of Speleology, 44: 17-23.
  • 30. Ford, D. C. & Williams, P. W., 2007. Karst Geomorphology and Hydrology. John Wiley & Sons, London, 562 pp.
  • 31. Frisia S., 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. International Journal of Speleology, 44: 1-16.
  • 32. Frisia, S. & Borsato, A., 2010. Karst. In: Alonso-Zarza, A. M. & Tanner, L. H. (eds), Carbonates in Continental Settings: Facies, Environments, and Processes. Developments in Sedimentology, 61: 269-318.
  • 33. Frumkin, A., Carmi, I., Gopher, A., Ford, D. C., Schwarcz, H. P. & Tsuk, T., 1999. A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel. The Holocene, 9: 677-682.
  • 34. Gaál, E., 2016. Lithology of carbonate rocks of Demanová Cave System. Slovenský Kras, 54: 109-129. [In Slovak, with English summary.]
  • 35. Gaál, E. & Michalík, J., 2017. Middle Triassic limestones in the Okno Cave (Demänovská dolina Valley, Low Tatras): lithology and facies types. Slovenský Kras, 55: 145-154. [In Slovak, with English summary.]
  • 36. Gázquez, F., Calaforra, J. M., Forti, P., Stoll, H., Ghaleb, B. & Delgado-Huertas, A., 2014. Paleoflood events recorded by speleothems in caves. Earth Surface Processes and Landforms, 39: 1345-1353.
  • 37. González-Lemos, S., Jiménez-Sánchez, M. & Stoll, H. M., 2015a. Sediment transport during recent cave flooding events and characterization of speleothem archives of past flooding. Geomorphology, 228: 87-100.
  • 38. González-Lemos, S., Müller, W., Pisonero, J., Cheng, H., Edwards, R. L. & Stoll, H. M., 2015b. Holocene flood frequency reconstruction from speleothems in northern Spain. Quaternary Science Reviews, 127: 129-140.
  • 39. Hattanji, T., Ueda, M., Song, W., Ishii, N., Hayakawa, Y. S., Takaya, Y. & Matsukura, Y., 2014. Field and laboratory experiments on high dissolution rates of limestone in stream flow. Geomorphology, 204: 485-492.
  • 40. Haviarová, D., Gradziński, M. & Motyka, J., 2021. Chemical composition of water in the Demanová Cave of Liberty (Demanovská dolina Valley, Nízke Tatry Mts.) Slovenský Kras, 59: 157-186. [In Slovak, with English summary.]
  • 41. Hellstrom, J., 2003. Rapid and accurate U/Th dating using parallel ion counting multicollector ICP-MS. Journal of Analytical Atomic Spectrometry, 18: 1346-1351.
  • 42. Hellstrom, J., 2006. U-Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology, 1: 289-295.
  • 43. Hercman, H., 2000. Reconstruction of palaeoclimatic changes in central Europe between 10 and 200 thousand years BP, based on analysis of growth frequency of speleothems. Studia Quaternaria, 17: 35-70.
  • 44. Hercman, H., Gąsiorowski, M., Szczygieł, J., Bella, P., Gradziński, M., Błaszczyk, M., Matoušková, Š., Pruner, P. & Bosák, P., 2023. Delayed valley incision due to karst capture (Demanová Cave System, Western Carpathians, Slovakia). Geomorphology, 437: 108809.
  • 45. Hercman, H., Gradziński, M. & Bella, P., 2008. Evolution of Brestovská Cave based on U-series dating of speleothems. Geochronometria, 32: 1-12.
  • 46. Kagan, E. J., Agnon, A., Bar-Matthews, M. & Ayalon, A., 2005. Dating large infrequent earthquakes by damaged cave deposits. Geology, 33: 261-264.
  • 47. Krklec, K., Domínguez-Villar, D. & Perica, D., 2021. Use of rock tablet method to measure rock weathering and landscape denudation. Earth-Science Reviews, 212: 103449.
  • 48. Louček, D., Michovská, J. & Trefná, E., 1960. Glaciation of the Low Tatra Mountains. Sborník Československé Společnosti Zeměpisné, 65: 326-352. [In Czech, with English summary.]
  • 49. Makos, M., Dzierżek, J., Nitychoruk, J. & Zreda, M., 2014. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quaternary Research, 82: 1-13.
  • 50. Martín-Chivelet, J., Munoz-García, M. B., Cruz, J. A., Ortega, A. I. & Turrero, M. J., 2017. Speleothem Architectural Analysis: Integrated approach for stalagmite-based paleoclimate research. Sedimentary Geology, 353: 28-45.
  • 51. Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E. & Edwards, R. L., 2010. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change, 71: 218-231.
  • 52. Motyka, J., Gradziński, M., Bella, P. & Holúbek, P., 2005. Chemistry of waters from selected caves in Slovakia - a reconnaissance study. Environmental Geology, 48: 682-692.
  • 53. Nannoni, A., Vigna, B., Fiorucci, A., Antonellini, M. & De Waele, J., 2020. Effects of an extreme flood event on an alpine karst system. Journal of Hydrology, 590: 125493.
  • 54. Newson, M. D., 1971. The role of abrasion in cavern development. Cave Research Group of Great Britain, Transactions, 13: 101-107.
  • 55. Palmer, A. N., 2001. Dynamics of cave development by allogenic water. Acta Carsologica, 30: 13-32.
  • 56. Parkhurst, D. L. & Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43. U.S Geological Survey, Denver, Colorado, 497 pp.
  • 57. Pawlak, J., Hercman, H., Sierpień, P., Pruner, P., Gąsiorowski, M., Mihevc, A., Zupan Hajna, N., Bosák, P., Błaszczyk, M. & Wach, B., 2020. Estimation of the durations of breaks in deposition - Speleothem case study. Geochronometria, 47: 154-170.
  • 58. Perrin, C., Prestimonaco, L., Servelle, G., Tilhac, R., Maury, M. & Cabrol, P., 2014. Aragonite-calcite speleothems: identifying original and diagenetic features. Journal of Sedimentary Research, 84: 245-269.
  • 59. Plagnes, V., Causse, C., Genty, D., Paterne, M. & Blamart, D., 2002. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France). Earth and Planetary Science Letters, 201: 87-103.
  • 60. Podgórska, D., 2019. Reconstruction of Vistulian Palaeoenvironmental Conditions Based on Analysis of Speleothems from the Demänová Cave System. Unpublished PhD Thesis, Jagiellonian University, Kraków, 116 pp. [In Polish, with English summary.]
  • 61. Prelovšek, M., 2012. The Dynamics of Present-Day Speleogenetic Processes in the Stream Caves of Slovenia. Založba ZRC, Ljubljana, 152 pp.
  • 62. Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M., 2010. Holocene climate change in arid Australia from speleothem and alluvial records. The Holocene, 20: 1093-1104.
  • 63. Railsback, L. B., Akers, P. D., Wang, L., Holdridge, G. A. & Voarintsoa, N. R., 2013. Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies. International Journal of Speleology, 42: 167-180.
  • 64. Railsback, L. B., Brook, G. A., Chen, J., Kalin, R. & Fleisher, C. J., 1994. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research, 64: 147-155.
  • 65. Railsback, L. B., Brook, G. A. & Webster, J. W., 1999. Petrology and paleoenvironmental significance of detrital sand and silt in a stalagmite from Drotsky's Cave, Botswana. Physical Geography, 20: 331-347.
  • 66. Sala, P., Bella, P., Szczygieł, J., Wróblewski, W. & Gradziński, M., 2022. Healed speleothems: A possible indicator of seismotectonic activity in karst areas. Sedimentary Geology, 430: 106105.
  • 67. Sánchez-Moreno, E. M., Font, E., Pavón-Carrasco, F. J., Dimuccio, L. A., Hillaire-Marcel, C., Ghaleb, B. & Cunha, L., 2022. Paleomagnetic techniques can date speleothems with high concentrations of detrital material. Scientific Reports, 12: 17936.
  • 68. Sierpień, P., Bosák, P., Hercman, H., Pawlak, J., Pruner, P., Zupan Hajna, N. & Mihevc, A., 2021. Flowstones from the Račiška Pečina Cave (SW Slovenia) record 3.2-Ma-long history. Geochronometria, 48: 31-45.
  • 69. Spötl, C., Fairchild, I. J. & Tooth, A. F., 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta, 69: 2451-2468.
  • 70. Spötl, C., Mangini, A. & Richards, D. A., 2006. Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quaternary Science Reviews, 25: 1127-1136.
  • 71. Szczygieł, J., Gradziński, M., Bella, P., Hercman, H., Littva, J., Mendecki, M. J., Sala, P. & Wróblewski, W., 2021. Quaternary faulting in the Western Carpathians: Insights into paleoseismology from cave deformations and damaged speleothems (T)einanová Cave System, Low Tatra Mts). Tectonophysics, 820: 229111.
  • 72. Vitásek, F., 1923. Plistocaen dans la vallée de la Demanová (Slovaquie). Sborník Státního geologického ústavu Československé republiky, 2: 157-171. [In Czech, with French summary.]
  • 73. Warken, S. F., Fohlmeister, J., Schröder-Ritzrau, A., Constantin, S., Spötl, C., Gerdes, A., Esper, J., Frank, N., Arps, J., Terente, M., Riechelmann, D. F. C., Mangini, A. & Scholz, D., 2018. Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record. Earth and Planetary Science Letters, 499: 122-133.
  • 74. Wróblewski, W., Gradziński, M., Motyka, J. & Stankovič, J., 2017. Recently growing subaqueous flowstones: Occurrence, petrography, and growth conditions. Quaternary International, 437: 84-97.
  • 75. Zupan Hajna, N., Mihevc, A., Bosák, P., Pruner, P., Hercman, H., Horáček, I., Wagner, J., Čermák, J., Pawlak, J., Sierpień, P., Kdýr, Š., Juřičková, L. & Švara, A., 2021. Pliocene to Holocene chronostratigraphy and paleoenvironmental records from cave sediments: Račiška pečina section (SW Slovenia). Quaternary International, 605-606: 5-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da37c51-95ab-466f-9bb3-6beff08a3a5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.