PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Texture, residual stresses and mechanical properties analysis in the commercial 1.4462 duplex stainless steel subjected to hydrostatic extrusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current research the hydrostatic extrusion (as one of the most common method of grain refinement) of the commercial 1.4462 duplex stainless steel was carried out using several reduction stages leading to a cumulative deformation strain ɛ = 1.4, and then ɛ = 3.8. The extrusion process has led to a change of microstructure and texture of the investigated material as was expected. Moreover, these changes were accompanied by improvements in mechanical properties measured by the nanohardness. The aim of this research was the characterization of the texture, residual stress and mechanical properties after subsequent stages of deformation.
Rocznik
Strony
525--534
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Woloska, 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Woloska, 141, 02-507 Warsaw, Poland
  • Institute of High Pressure Physics, Polish Academy of Sciences (Unipress), Warsaw, Poland
  • Warsaw University of Technology, Materials Science and Engineering Faculty, Woloska, 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] M.R. Miranda, J.M. Sasaki, S.S.M. Tavares, H.F.G. De Abreu, J. M. Neto, The use of X-ray diffraction, microscopy, and magnetic measurements for analysing microstructural features of a duplex stainless steel, Mater. Charact. 54 (2005) 387–393.
  • [2] J.C. Lippold, D. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, John Wiley & Sons, New Jersey, 2005.
  • [3] Verlinden B, Severe plastic deformation of metals, Association of Metallurgical Engineers Serbia and Montenegro Scientific paper AME DC:669.01:620.174/.175=20MJOM Metalurgija - Journal of Metallurgy, 165-182.
  • [4] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.
  • [5] Y.T. Zhu, T.C. Lowe, Observations and issues on mechanisms of grain refinement during ECAP process, Mater. Sci. Eng. A 291 (2000) 46–53.
  • [6] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater. 52 (2004) 4589–4599.
  • [7] A. Vorhauer, R. Pippan, On the homogeneity of deformation by high pressure torsion, Scr. Mater. 51 (2004) 921–925.
  • [8] G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Developing high-pressure torsion for use with bulk samples, Mater. Sci. Eng. A 406 (2005) 268–273.
  • [9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultrafine grained bulk aluminum produced by accumulative rollbonding (ARB) process, Scripta Mater. 39 (1998) 1221–1227.
  • [10] Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, J. Hjelen, Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression, Scripta Mater. 58 (2008) 311–314.
  • [11] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation; a wealth of challenging science, Acta Mater. 61 (2013) 782–817.
  • [12] B. Adamczyk-Cieślak, J. Mizera, K.J. Kurzydłowski, Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments, Mater. Charact. 62 (2011) 327–332.
  • [13] J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, K.U. Kainer, Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31, Scr. Mater. 53 (2005) 259–264.
  • [14] J. Gill Sevillano, P. Van Houtte, E. Aernoudt, Prog. Mater. Sci. 25 (1980) 69–412.
  • [15] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782–817.
  • [16] J. Ryś, A. Zielińska-Lipiec, Structural aspects of ferrite and austenite co-deformation in duplex stainless steel, Solid State Phenom. 203–204 (2013) 28–33.
  • [17] M. Liljas, P. Johansson, H.P. Liu, C.O.A. Olsson, Development of a lean duplex stainless steel, Steel Res. Int. 79 (2008) 466–473.
  • [18] A. Belyakov, Y. Kimura, K. Tsuzaki, Microstructure evolution in dual-phase stainless steel during severe deformation, Acta Mater. 54 (2006) 2521–2532.
  • [19] S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, A.A. Gomes, Microstructural changes produced by plastic deformation in the UNS S31803 duplex stainless steel, J. Mater. Process Technol. 180 (2006) 318–322.
  • [20] E.S. Perdahcioglu, H.J.M. Geijselaers, J. Huétink, Influence of stress state and strain path on deformation induced martensitic transformations, Mater. Sci. Eng. A 481–482 (2008) 727–731.
  • [21] S.S.M. Tavares, D. Gunderov, V. Stolyarov, J.M. Neto, Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel, Mater. Sci. Eng. A 358 (2003) 32–36.
  • [22] L. Chen, F.P. Yuan, P. Jiang, X.L. Wu, Mechanical properties and nanostructures in a duplex stainless steel subjected to equal channel angular pressing, Mater. Sci. Eng. A 551 (2012) 154–159.
  • [23] S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Mater. Sci. Eng. A 387–389 (2004) 158–162.
  • [24] P. Maj, B. Adamczyk-Cieślak, J. Mizera, W. Pachla, K.J. Kurzydłowski, Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion, Mater. Charact. 93 (2014) 110–118.
  • [25] D. Raabe, Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel, Acta Mater. 45 (1997) 1137–1151.
  • [26] C. Herrera, D. Ponge, D. Raabe, Microstructure and texture of hot-rolled duplex stainless steel, in: 3rd Int. Conf. Thermomechanical Process. Steels, TMP, vol. 2008, 2008.
  • [27] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, 2004.
  • [28] D. Jakubowska, J. Zdunek, M. Kulczyk, J. Mizera, K.J. Kurzydłowski, Microstructure and texture of hydrostatic extrusion deformed ni single crystals and polycrystal, Adv. Mater. Sci. Eng. (2015) 1–7.
  • [29] D. Raabe, Overview on basic types of hot rolling textures of steels, Steel Res. 74 (2003) 327–337.
  • [30] R. Dakhlaoui, A. Baczmański, C. Braham, S. Wroński, K. Wierzbanowski, E.C. Oliver, Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel, Acta Mater. 54 (2006) 5027–5039.
  • [31] W. Reick, M. Pohl, A.F. Padilha, Fe–Cr–Ni (DIN 1.4462): stacking faults, Steel Res. 67 (1996) A364.
  • [32] A. Machov, G.E. Beltz, M. Chang, Atomistic simulation of stacking fault formation in bcc iron, Modell. Simul. Mater. Sci. Eng. 7 (1999) 949–974.
  • [33] J. De Messemaeker, B. Verlinden, J. Van Humbeeck, Texture of if steel after equal channel angular pressing (ECAP), Acta Mater. 53 (2005) 4245–4257.
  • [34] B. Kim, T.T.T. Trang, N.J. Kim, Deformation behavior of ferriteaustenite duplex high nitrogen steel, Met. Mater. Int. 20 (2014) 35–39.
  • [35] R.L. Peng, J. Gibmeier, G.C. Chai, S. Johansson, Load partitioning in a duplex stainless steel with surfach strength gradient and residual stresses, Adv. X-Ray Anal. (2008) 773–780.
  • [36] C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, et al., Deformation behavior of ferrite-austenite duplex lightweight Fe–Mn–Al–C steel, Scr. Mater. 66 (2012) 519–522.
  • [37] W. Zieliński, W. Światnicki, M. Barstch, U. Messerschmidt, Non-uniform distribution of plastic strain in duplex steel during TEM in situ deformation, Mater. Chem. Phys. 81 (2003) 476–479.
  • [38] N. Jia, R. Lin Peng, Y.D. Wang, S. Johansson, P.K. Liaw, Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and selfconsistent modeling, Acta Mater. 56 (2008) 782–793.
  • [39] Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, et al., Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by highpressure torsion, Acta Mater. 63 (2014) 16–29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da21779-ae8b-4ec5-b823-9672f3116208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.