PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In silico analysis of methylation of the selected genes using computer programs based on various analytical techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selected genes were analyzed in silico in three species: red fox (Vulpes vulpes), raccoon dog (Nyctereutes procyonoides), and dog (Canis lupus familiaris). This type of analysis exemplifies current and potential research on gene expression. Four nucleotide sequences, of the genes IGF1, MYO15A, PAX3 and MC1R, were obtained from the NCBI online database. The analyses focused on the presence of CpG islands and two analytical techniques, BSP and MSP. The results from three computer programs, CpG Island Searcher®, BiSearch® and MethPrimer®, were discussed in detail. The applications were compared in terms of their functionality and usefulness.
Twórcy
  • Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Poland
autor
  • Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Poland
autor
  • Department of Zoology, Ecology and Wildlife Management, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
  • Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Poland
Bibliografia
  • [1] Jörg T. DNA methylation methods and protocols. 2nd ed. New York: Humana Press Inc.; 2009.
  • [2] Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002;18(11):1427–31.
  • [3] Teufel A, Krupp M, Weinmann A, Galle PR. Current bioinformatics tools in genomic biomedical research. Int J Mol Med 2006;17(6):967–73.
  • [4] Salozhin SV, Prokhorchuk EB, Georgiev GP. Methylation of DNA-One of the major epigenetic markers. Biochemistry (Moscow) 2005;70(5):525–32.
  • [5] Bock C, Walter J, Paulsen M, Lengauer T. CpG Island mapping by epigenome prediction. PLoS Comput Biol 2007;3 (6):e110. http://dx.doi.org/10.1371/journal.pcbi.0030110.
  • [6] Gardiner-Garden MM, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987;196(2):261–82.
  • [7] Medvedeva YA. Algorithms for CpG Islands Search: new advantages and old problems. Bioinformatics – Trends Methodol 2011;21:449–72. http://dx.doi.org/10.5772/22883.
  • [8] Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002;99:3740–5.
  • [9] Zhaoa Z, Han L. CpG islands: algorithms and applications in methylation studies. Biochem Biophys Res Commun 2009;382(4):643–5. http://dx.doi.org/10.1016/j.bbrc.2009.03.076.
  • [10] Tusnády GE, Simon I, Váradi A, Arányi T. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 2005;33(1):e9. http://dx.doi.org/10.1093/nar/gni012.
  • [11] Long-Cheng L, Rajvir D. MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002;18(11):1427–31.
  • [12] Gryzinska M, Błaszczak E, Strachecka A, Jeżewska- Witkowska G. Analysis of age-related global DNA methylation in chicken. Biochem Genet 2013;51:554–63.
  • [13] Gryzińska M, Andraszek K, Jeżewska-Witkowska G. Estimation of global content of 5-methylcytosine in DNA in chicken embryos in critical moment during the hatching process. Folia Biol (Krakow) 2014;62(2):97–101.
  • [14] Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. PNAS 1996;93(18):9821–6.
  • [15] Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. BioTechniques 2002;33(3):632–49.
  • [16] Klukowska J, Wengi-Piasecka A, Świtoński M. A note on comparison of exon 2 of the IGF-I gene in four species of the family Canidae. J Anim Feed Sci 2003;12:859–64.
  • [17] Krempler A, Breen M, Breng B. Assignment of the canine paired-box3(PAX3) gene to chromosome 37q16-q17 by in situ hybridization. Cytogenet Cell Genet 2000;90(1–2): 66–7.
  • [18] Nowacka-Woszuk J, Salamon S, Gorna A, Świtoński M. Missense polymorphisms in the MC1R gene of the dog, red fox, arctic fox and Chinese raccoon dog. J Anim Breed Genet 2013;130(2):136–41.
  • [19] Han JI, Yang H, Jeung EB, Na KJ. Altered expression of melanocortin-1 receptor (MC1R) in a yellow-coloured wild raccoon dog (Nyctereutes procyonoides). Vet Dermatol 2012;3:187–237. http://dx.doi.org/10.1111/j.1365-3164.2012.01036.x.
  • [20] Wang GD, Cheng LG, Fan RX, Irwin DM, Tang SS, Peng JG, et al. Signature of balancing selection at the MC1R gene in Kunming dog populations. PLOS ONE 2013;8(2):e55469.
  • [21] Jakubczak A, Gryzińska M, Horecka B, Dziadosz K, Jezewska-Witkowska G. SNP genetic diversity within a fragment of the gene MYO15A responsible for the hearing process in a population of farmed and free-living animals of the Canidae family. Acta Vet Beograd 2014;64(3). http://dx.doi.org/10.2478/acve-2014-0034.
  • [22] Jakubczak A, Gryzińska M, Horecka B, Kasperek K, Dziadosz K, Jeżewska-Witkowska G. Genetic differentiation of common fox Vulpes vulpes (Linnaeus, 1758) on the basis of the insulin-like growth factor 1 (IGF1), myosin-XV (MYO15A) and paired box homeotic 3 (PAX3) genes fragments polymorphism. Ann Anim Sci 2014;14(4). http://dx.doi.org/10.2478/aoas-2014-0052.
  • [23] Ku JL, Jeon YK, Park JG. Methylation-specific PCR. Methods Mol Biol 2011;791:23–32.
  • [24] Hajkova P, el-Maarri O, Engemann S, Oswald J, Olek A, Walter J. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol 2002;200:143–54.
  • [25] Gryzinska M, Andraszek K, Jocek G. DNA methylation analysis of the gene CDKN2B in Gallus gallus (Chicken). Folia Biol (Krakow) 2013;61(3–4):165–71.
  • [26] Weisenberger D, Campan M, Long TI, Myungjin K, Woods C, Fiala E, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005;33 (21):6823–36.
  • [27] Hernández HG, Tse MY, Pang SC, Arboleda H, Forero DA. Optimizing methodologies for PCR-based DNA methylation analysis. BioTechniques 2013;55(4):181–97. http://dx.doi.org/10.2144/000114087.
  • [28] Anderson WD, Probst JF, Belyantseva AI, Fridell AR, Beyer L, Martin DM, et al. The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 2000;9(12):1729–38.
  • [29] Kikkawa Y, Mburu P, Morse S, Kominami R, Townsend S, Brown SD. Mutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium. Hum Mol Genet 2005;14(3):391–400.
  • [30] Nal N, Ahmed MZ, Erkal E, Alper MO, Lüleci G, Dinç O, et al. Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing. Hum Mutat 2007;28(10):1014–9.
  • [31] Lamey MT, Koenders A, Ziman M. Pax genes in myogenesis: alternate transcripts add complexity. Hist Histopath 2004;19(4):1289–300.
  • [32] Relaix F, Rocancourt D, Mansouri A, Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 2004;18(9):1088–105.
  • [33] Newton J, Wilklie A, He L, Jordan S, Metallianas D, Holmes N, et al. Melanocortic 1 receptor variation in the domestic dog. Mamm Genome 2000;11(1):24–30.
  • [34] Perez OAB, Fernendez LP, DeTorre C, Herraiz C, Martinez-Escribano JA, Benítez J, et al. Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Hum Mutat 2009;30(5):811–22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8da15652-445c-40e6-85b5-86d297d62e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.