PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of non-contact geodetic measurement techniques in dam monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maintenance of dams, including the protection of reservoir and flood embankments, requires regular control measurements and assessment of their technical condition. The choice of measurement methods, especially in terms of their speed and reliability, become crucial especially when the facilities are endangered due to a natural disaster. However, despite the enormous rapid development of modern geodetic measurement techniques, measurements at most dams are still conducted using classical techniques, such as angular-linear or leveling measurements which require interference with the measured structure. In addition, they need to be personally performed by employees or require visual inspections of the structure or in its protection zone. This article presents non-contact geodetic measurement techniques, such as terrestrial laser scanning, remote sensing classification of intensity and thermovision images recorded with various measurement sensors, digital image correlation, digital photogrammetry, or UAV. They are presented and compared in terms of their reliability, efficiency and accuracy of the obtained data, and the possibility of their automation and integration. As surveyors and hydraulic and geotechnical engineers are increasingly turning to modern measurement technologies, the aim of this paper is to help in selecting appropriate and effective monitoring tools ensuring fast and safe measurements crucial for the safety and maintenance of concrete structures. It presents examples of research based on the use of the modern measuring techniques carried out in recent years by employees of the Faculty of Geodesy and Cartography at the Warsaw University of Technology.
Rocznik
Strony
49--70
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
  • University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
Bibliografia
  • [1] W. Kiljan, “Współczesne metody diagnostyki masywnych konstrukcji betonowych”, Infrastruktura i Ekologia Terenów Wiejskich, 2007, vol. 4, no. 2.
  • [2] A. Piekarczyk, “Lokalizacja wad struktury betonu w konstrukcji”, in XXIX Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, 26-29.03.2014. Vol. 2, pp. 1-81.
  • [3] J. Zaczek-Peplinska, “Metodyka oceny stanu powierzchni betonowej budowli piętrzącej na podstawie analizy spektralnej wyników naziemnego skanowania laserowego”, Prace Naukowe Politechniki Warszawskiej. Geodezja, 2018, vol. 57.
  • [4] M. Jaboyedoff, T. Oppikofer, A. Abbelan, et al., “Use of LiDAR in landslide investigations: a review”, Natural Hazards, 2012, vol. 61, no. 1, pp. 5-28, DOI: 10.1007/s11069-010-9634-2.
  • [5] D. Milan, “Terrestrial laser scan-derived topographic and roughness data for hydraulic modeling of gravelbed rivers”, in Laser Scanning for the Environmental Sciences, G.L. Heritage, A.R.G. Large, Eds. Wiley-Blackwell, 2009, pp. 133-146, DOI: 10.1002/9781444311952.ch9.
  • [6] G. Alberti, F. Boscutti, F. Pirotti, et al., “A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study”, iForest-Biogeosciences and Forestry, 2013, vol. 6, no. 3, pp. 156-168, DOI: 10.3832/ifor0876-006.
  • [7] K. Calders, J. Adams, J. Armston, et al., “Terrestrial laser scanning in forest ecology: Expanding the horizon”, Remote Sensing of Environment, 2020, vol. 251, art. ID 112102, DOI: 10.1016/j.rse.2020.112102.
  • [8] V. Valzano, A. Bandiera, J.-A., Beraldin, Realistic Representations of Cultural Heritage Sites and Objects Through Laser Scanner Information. National Research Council of Canada, Ottawa, 2005.
  • [9] S. Crutchley, “Using LiDAR in archaeological contexts: the English heritage experience and lessons learned”, in Laser Scanning for the Environmental Sciences, G.L. Heritage, A.R.G. Large, Eds. Wiley Blackwell, 2009, pp. 180-200.
  • [10] S. Pascucci, C. Bassani, A. Palombo, M. Poscolieri, R. Cavalli, “Road asphalt pavements analyzed by airborne thermal remote sensing: Preliminary results of the Venice highway”, Sensors, 2008, vol. 8, no. 2, pp. 1278-1296, DOI: 10.3390/s8021278.
  • [11] M. Petlicki, C. Kinnard, “Calving of Fuerza Aérea Glacier (Greenwich Island, Antarctica) observed with terrestrial laser scanning and continuous video monitoring”, Journal of Glaciology, 2016, vol. 62, no. 235, pp. 835-846, DOI: 10.1017/jog.2016.72.
  • [12] L. Barazzetti, R. Sala, M. Scaioni, et al., “3D scanning and imaging for quick documentation of crime and accident scenes”, in Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI. 2012, vol. 8359, DOI: 10.1117/12.920728.
  • [13] M. Tsakiri, D. Lichti, N. Pfeifer, “Terrestrial Laser Scanning for Deformation Monitoring”, in Proceedings of 3rd IAG/12th FIG Symposium, Baden, Austria, May22-24, 2006. CD-ROM, pp. 1-10.
  • [14] B. Teskey, P. Bijoy, “New Instrumental and Methodology for Deformation Monitoring”, in Proceedings of Optical 3D Measurement Techniques, Vienna, Austria, vol. 2. 2005, pp. 103-111.
  • [15] M. Alba, L. Fregonese, F. Prandi, M. Scaioni, P. Valgoi, “Structural monitoring of a large dam by terrestrial laser scanning”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, vol. 36, no. 5. [Online]. Available: https://www.isprs.org/proceedings/XXXVI/part5/paper/1271_Dresden06.pdf.
  • [16] M. Alba, G. Bernardini, A. Giussani, et al., “Measurement of dam deformations by terrestrial interferometric techniques”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, vol. 37(1374), pp. 133-139. [Online]. Available: https://www.isprs.org/proceedings/ XXXVII/congress/1_pdf/23.pdf.
  • [17] L. Ramos-Alcázar, M. Marchamalo-Sacristán, R. Martínez-Marín, “Comparing dam movements obtained with Terrestrial Laser Scanner (TLS) data against direct pendulums records”, Revista Facultad de Ingeniería Universidad de Antioquia, 2015, vol. 76, pp. 99-106, DOI: 10.17533/udea.redin.n76a12.
  • [18] Y. Li, P. Liu, H. Li, F. Huang, “A Comparison Method for 3D Laser Point Clouds in Displacement Change Detection for Arch Dams”, ISPRS International Journal of Geo-Information, 2021, vol. 10, no. 3, DOI: 10.3390/ijgi10030184.
  • [19] J. Zaczek-Peplinska, A. Adamek, P. Popielski, “Analiza możliwości wykorzystania wyników skanowania laserowego w technicznej kontroli zapór”, in Bezpieczeństwo zapór - nowe wyzwania, J.A. Winter, A. Kosik, A. Wita, Eds. Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy, 2011, pp. 258-267.
  • [20] J. Zaczek-Peplinska, M. Kowalska, “Terrestrial laser scanning in monitoring hydrotechnical objects”, Journal of Ecological Engineering (Inżynieria Ekologiczna), 2016, vol. 17, no. 4, pp. 120-128, DOI: 10.12911/22998993/63887.
  • [21] J. Zaczek-Peplinska, A. Adamek, “Inwentaryzacja metodą skanowania laserowego galerii zapory ziemnej”, in Zastosowanie technologii naziemnego skaningu laserowego w wybranych zagadnieniach geodezji inżynieryjnej, J. Zaczek-Peplinska, M. Strach, Eds. Oficyna Wydawnicza Politechniki Warszawskiej, 2017, pp. 76-87.
  • [22] D.S. Boyd, R.A. Hill, “Validation of airborne LiDAR intensity values from a forested landscape using hymap data: preliminary analyses”, IAPRS, 2007, vol. 36, part 3, pp. 71-76. [Online]. Available: http://www.isprs.org/proceedings/XXXVI/3-W52/final_papers/Boyd_2007.pdf.
  • [23] D.W. Law, L. Holden, D. Silcock, “The assessment of crack development in concrete using a terrestrial laser scanner (TLS)”, Australian Journal of Civil Engineering, 2015, vol. 13, no. 1, pp. 22-31, DOI: 10.1080/14488353.2015.1092635.
  • [24] R. Zapłata, Nieinwazyjne metody w badaniu i dokumentacji dziedzictwa kulturowego - aspekty skanowania laserowego w badaniach archeologicznych i architektonicznych. Warszawa: Fundacja Hereditas, 2013.
  • [25] J.R. Jensen, Introductory Digital Image Processing - A Remote Sensing Perspective, 2nd ed. Upper Saddle River, New Jersey: Prentice Hall, 1996.
  • [26] W. Liu, Ch. Hung, B. Kuo, T. Coleman, “An adaptive clustering algorithm based on the possibility clustering and ISODATA for multispectral image classification”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, vol. 37, part B7. [Online]. Available: https://www.isprs.org/proceedings/XXXVII/congress/7_pdf/4_WG-VII-4/15.pdf.
  • [27] L. Chen, Y. Wang, S. Jia, M.F.F. Siu, “Development of panoramic infrared images for surface temperature analysis of buildings and infrastructures”, Energy and Buildings, 2021, vol. 232, art. ID 110660, DOI: 10.1016/j.enbuild.2020.110660.
  • [28] D. Zumr, V. David, J. Jerábek, et al., “Monitoring of the soil moisture regime of an earth-filled dam by means of electrical resistance tomography, close range photogrammetry, and thermal imaging”, Environmental Earth Sciences, 2020, vol. 79, no. 12, pp. 1-11, DOI: 10.1007/s12665-020-09052-w.
  • [29] C.Y. Chen, S.C. Chen, K.H. Chen, Z.H. Liu, “Thermal monitoring and analysis of the large-scale field earth-dam breach process”, Environmental Monitoring and Assessment, 2018, vol. 190, no. 8, pp. 1-17, DOI: 10.1007/s10661-018-6869-y.
  • [30] J. Zaczek-Peplinska, M. Kowalska, K. Malowany, M. Malesa, “Application of Digital Image Correlation and Geodetic Displacement Measuring Methods to Monitor Water Dam Behavior under Dynamic Load”, Journal of Civil Engineering and Architecture, Journal of Civil Engineering and Architecture, 2015, vol. 9, no. 12, pp. 1496-1505, DOI: 10.17265/1934-7359/2015.12.011.
  • [31] J.V. Aanstoos, K. Hasan, C. O’Hara, et al., “Use of remote sensing to screen earthen levees”, in Procedings 2010 39th IEEE Applied Imagery Pattern Recognition Workshop. Washington, DC: IEEE, 2010, DOI: 10.1109/AIPR.2010.5759704.
  • [32] M. Zeghal, T. Abdoun, B. Yazici, et al., “Health assessment of levees using remote sensing and field monitoring”, presented at International Workshop on Remote Sensing for Disaster Response, 15-16 Sept. 2011, Stanford University, California, 2011.
  • [33] X. Lv, B. Yazici, V. Bennett, M. Zeghal, T. Abdoun, “Joint pixels InSAR for health assessment of levees in New Orleans”, Geo-Congress 2013: Stability and Performance of Slopes and Embankments III. ASCE, 2013, pp. 279-288, DOI: 10.1061/9780784412787.028.
  • [34] M.D. Yang, J.Y. Lin, C.Y. Yao, et al., “Landslide-induced levee failure by high concentrated sediment flow - A case of Shan-An levee at Chenyulan River, Taiwan”, Engineering Geology, 2011, vol. 123, no. 1-2, pp. 91-99, DOI: 10.1016/j.enggeo.2011.07.006.
  • [35] G. Long, M.J. Mawdesley, M. Smith, A. Taha, “Simulation of airborne LiDAR for the assessment of its role in infrastructure asset monitoring”, in Proceedings of the International Conference on Computing in Civil and Building Enginerering, W. Tizani, Ed. Nottingham University Press, 2010.
  • [36] Z. Kurczyński, K. Bakuła, “SAFEDAM - Zaawansowane technologie wspomagające przeciwdziałanie zagrożeniom związanym z powodziami”, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 2016, vol. 28, pp. 39-52, DOI: 10.14681/afkit.2016.003.
  • [37] V. Tournadre, M. Pierrot-Deseilligny, P.H. Faure, “UAV Photogrammetry to Monitor Dykes-Calibration and Comparison to Terrestrial LiDAR”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, vol. 40, no. 3, pp. 143-148, DOI: 10.5194/isprsarchives-XL-3-W1-143-2014.
  • [38] C. Flener, M. Vaaja, A. Jaakkola, et al., “Seamless mapping of river channels at high resolution using mobile LiDAR and UAV-photography”, Remote Sensing, 2013, vol. 5, no. 12, pp. 6382-6407, DOI: 10.3390/rs5126382.
  • [39] K. Bakuła, W. Ostrowski, M. Szender, “Possibilities of using LiDAR and photogrammetric data obtained with unmanned aerial system for levees monitoring”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, vol. 41, part. B1, pp. 773-780, DOI: 10.5194/isprsarchives-XLI-B1-773-2016.
  • [40] Prawo Budowlane 2016. Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 9 lutego 2016 r. w sprawie ogłoszenia jednolitego tekstu ustawy - Prawo budowlane, Dz.U. 2016 poz. 290 z późniejszymi zmianami.
  • [41] Prawo Wodne 2017. Ustawa z dnia 20 lipca 2017 r. - Prawo wodne, Dz.U. 2017 poz. 1566 z późniejszymi zmianami.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d9dd52b-ed26-4503-ab76-59a86b2e62fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.