PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption and Co-Adsorption of Polyaldehyde Dextran Nanoparticles and Nonionic Surfactant at an Air–Water Interface: Potential Implications for Pulmonary Drug Delivery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100) comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD). The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP) method and by the axisymmetric drop shape analysis (ADSA). Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s). In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s). Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00 - 645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00 - 645 Warsaw, Poland
Bibliografia
  • 1. Beck-Broichsitter M, Ruppert C, Schmehl T., Günther A., Seeger W., 2014. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim. Biophys. Acta - Biomembranes, 1838, 474–481. DOI: 10.1016/j.bbamem.2013.10.016.
  • 2. Bizmark N., Ioannidis M.A., Henneke D.E., 2014. Irreversible adsorption-driven assembly of nanoparticles at fluid interfaces revealed by a dynamic surface tension probe. Langmuir, 30, 710-717. DOI: 10.1021/la404357j
  • 3. Eastoe J., Dalton J.S. 2000., Dynamic surface tension and adsorption mechanisms of surfactants at the air- water interface. Adv. Coll. Interface Sci., 85, 103-144. DOI: 10.1016/S0001-8686(99)00017-2.
  • 4. Ellyett K.M., Broadbent R.S., Fawcett E.R., Campbell A.J., 1996. Surfactant aerosol treatment of respiratory distress syndrome in the spontaneously breathing premature rabbit. Pediatric Res., 39, 953-957. DOI: 10.1203/00006450-199606000-00005.
  • 5. Gibbs J.W., 1961. On the equilibrium of heterogeneous substances. In: The Scientific Papers of J. Willard Gibbs. Vol. I. Thermodynamics. Dover Publications, New York.
  • 6. Goerke J., 1992. Surfactant and lung mechanics. In: Robertson B., Van Golde L.M.G., Batenburg J.J. (Eds.). Pulmonary Surfactant: From molecular biology to clinical practice. Elsevier, Amsterdam, 165-192.
  • 7. Gradoń L, Podgórski A., 1989. Hydrodynamical model of pulmonary clearance. Chem. Eng. Sci., 44, 741-749. DOI: 10.1016/0009-2509(89)85048-1.
  • 8. Gradoń L., Podgórski A., Sosnowski T.R., 1996. Experimental and theoretical investigations of transport properties of DPPC monolayer. J. Aerosol Med., 9, 357-367. DOI:10.1089/ jam.1996.9.357.
  • 9. Grotberg J.B., 2001. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng., 3, 421-457. DOI: 10.1146/annurev.bioeng.3.1.421.
  • 10. Hall S.B., Lu R.Z., Venkitaraman A.R., Hyde R.W., Notter R.H., 1985. Inhibition of pulmonary surfactant by oleic acid: mechanisms and characteristics. J. Appl. Physiol., 72, 1708-1716.
  • 11. Jabłczyńska K., Janczewska M., Kulikowska A., Sosnowski T.R., 2015. Preparation and characterization of biocompatible polymer particles as potential nanocarriers for inhalation therapy. Int. J. Polym. Sci., 2015, Article ID 763020. DOI: 10.1155/2015/763020.
  • 12. Kondej D., Sosnowski T.R., 2013. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhalation Toxicol., 25, 77-83. DOI: 10.3109/08958378. 2012.756087
  • 13. Kondej D., Sosnowski T.R., 2016. Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation. Env. Sci. Pollut. Res., 23, 4660-4669. DOI: 10.1007/s11356-015-5610-4.
  • 14. Kramek-Romanowska K., Odziomek M., Sosnowski T.R., 2015. Dynamic tensiometry studies on interactions of novel therapeutic inhalable powders with model pulmonary surfactant at the air-water interface. Coll.
  • 15. Surfaces A: Physicochem. Eng. Aspects, 480, 149-158. DOI: 10.1016/j.colsurfa.2015.02.017.
  • 16. Lyklema J. 2000 Fundamentals of interface and colloid science. Academic Press, London-San Diego.
  • 17. Miller R., Liggieri L., 2009. Interfacial Rheology. Vol I. Progress in Colloid and Interface Science, Brill, Leiden- Boston.
  • 18. Notter R.H, Taubold R, Mavis R.D., 1982. Hysteresis in saturated phospholipid films and its potential relevance
  • 19. for lung surfactant function in vivo. Exp. Lung Res., 3, 109-127.
  • 20. Okubo T., 1995. Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air– water interface. J. Coll. Interface Sci., 171, 55–62. DOI:10.1006/jcis.1995.1150.
  • 21. Podgórski A,, Gradoń L., 1993. An improved mathematical model of hydrodynamical self-cleansing of pulmonary alveoli. Ann. Occup. Hyg., 37, 347-365. DOI: 10.1093/annhyg/37.4.347
  • 22. Podgórski A., Sosnowski T.R., Gradoń L., 2001. Deactivation of the pulmonary surfactant dynamics by toxic aerosols and gases. J. Aerosol Med., 14, 455-466. DOI: 10.1089/08942680152744668.
  • 23. Rao J., Das P.K., 1994. Pulmonary oedema due to inhalation of detergent aerosol. Malaysian J. Pathol., 16, 165–
  • 24. 166.
  • 25. Rosenberg O.A., Lebedeva E.S., Loshakova L.V., Shulga A.E., Seiliev A.A., Volchkov V.A., 2016. Influence of long-term inhaled glucocorticoids on the lung surfactant phospholipid levels in rats. Int. J. Biomed., 6, 167-169. DOI: 10.21103/Article6(3)_OA1.
  • 26. Santos C.T., Edelman S., 2014. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin. Ther., 36, 1275-1289. DOI: 10.1016/j.clinthera.2014.06.025.
  • 27. Sosnowski T.R., 2006. Dynamic effects in gas-liquid systems with an active interface (in Polish: Efekty dynamiczne w układach ciecz-gaz z aktywną powierzchnią międzyfazową) OWPW, Warsaw.
  • 28. Sosnowski T.R., Gradoń L., Skoczek M., Droździel H., 1998. Experimental evaluation of importance of the pulmonary surfactant for oxygen transfer rate in human lungs. Int. J. Occup. Safety Ergon., 4, 391-409. DOI: 10.1080/10803548.1998.11076401.
  • 29. Sosnowski T.R., Gradoń L., Podgórski A., 2000. Influence of insoluble aerosol deposits on the surface activity of the pulmonary surfactant: a possible mechanism of alveolar clearance retardation? Aerosol Sci. Technol., 32, 52- 60. DOI: 10.1080/027868200303920.
  • 30. Sosnowski T.R., Kubski P., Wojciechowski K. 2016. New experimental model of pulmonary surfactant for biophysical studies. Coll. Surfaces A: Physicochem. Eng. Aspects, DOI: 10.1016/j.colsurfa.2016.06.044.
  • 31. Ward A.F.H., Tordai L., 1946. Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects. J. Chem. Phys., 14, 453–461.
  • 32. Wasiak I., Kulikowska A., Janczewska M., Michalak M., Cymerman I.A., Nagalski A., Kallinger P., Szymanski
  • 33. W.W., Ciach T., 2016. Dextran nanoparticle synthesis and properties. PLoS ONE 11(1), e0146237. DOI: 10.1371/journal.pone.0146237
  • 34. Zhang H., Wang Y.E., Neal C.R., Zuo Y.Y., 2012. Differential effects of cholesterol and budesonide on biophysical properties of clinical surfactant. Pediatric Res. 71, 316–323. DOI: 10.1038/pr.2011.78.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d9a51db-d1d4-41da-8550-5b8e47e9adc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.