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The article presents a numerical method jor determining the intensity oj sound. The
method is based on surjace density oj sound rays. It assumes that a ray oj sound carries a
specific acoustic power. As a result, it is no longer necessary to determine intensity in
caustics, especially given the jact that intensity determined in caustics using the method
employed so jar has an infinite value.

INTRODUCTION

The range, accuracy of bearing and other sonar operating parameters largely depend on
the local conditions of acoustic wave propagation, and in particular on range distribution of
sound velocity. The distribution of sound velocities is measured and used as a basis for
determining the spatial distribution of acoustic wave intensity. What the distribution shows
are areas in which the target can be found and shadow zones in which the intensity is not
strong enough for detection to OCCUL

The most frequent method used to determine the distribution of acoustic field intensity
assumes that intensity is inversely proportional to the distance between two adjacent sound
rays which is computed using geometrical acoustics method [1]. The method yields good
results with the exception of particular places (caustics) in which the rays of sound cross. In
these areas, the intensity computed reaches infinity which is contrary to the energy
conservation law and the results of measurements [2].

Presented below is a numerical method for deterrnining the distribution of sound
intensity which solves the problem of caustics.

l. DESCRIPTION OF THE METHOD

So far it was assumed that a specific power of the acoustic wave is contained in the cone
which is bounded by two neighbouring rays sent from a source. Wave intensity is then
inversely proportional to the area of the cone's cross-section, When rays of sound cross, the
area of the cross-section is zero and intensity has an infinite value. To avoid the problem of
ray cross ing, it was assumed that the power of the wave is contained in an infinitely narrow
pipe which is represented by a single ray of sound. To enable numerical computations it was
also assumed that power is zero beyond the rays. With such assumptions the model of
propagation is a discrete one, analogue to the discrete model of sound. From the source a
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certain number of rays is sent in various directions. Bach of the rays carries a specific power.
The entire power radiated by the source is equal to the sum of power contained in all rays.
Wave intensity in a specific point of the centre is equal to the number of rays cutting across
the surface having a unit field and stretching around the point. Because the num ber of rays is
limited and the area of the surface is constant and different from zero, the intensity computed
in this way will never reach infinity.

The above method could be pur to a direct use, if the computations were applied to a
three-dimensional space. To do that would require a great - and what is more important -
unnecessary number of numerical operations. The number of operations can be radically
reduced, if we assume that the distribution of the acoustic field has axial symmetry. This
assumption makes the spatial problem a pIanar one, but requires some modification of the
above computational method. Another area to be analysed is the problem of deseribing the
field in rectangular co-ordinates instead of in polar co-ordinates, which would be natural in
this case.

Let us consider an element of the surface given in Fig. 1 whose dimensions are:
~h(xpo)=~e'Xl' ~1(xpO)=~<p.xl (1)

y

x

Fig.l. Co-ordinate system for determining the intensity of acoustic field.

The power cutting across the surface amounts to:
p(xJ= I (xpO ). ~h(xpO). ~1(xpO) = p(xl)= I(xpO). ~s(xpO) (2)

The same power cuts across every elementary surface placed on, the surface of a sphere
with radius x, which matches the beam's upward deflection by angle e or a side one by angle
<p. The power also cuts across the elementary surface placed on the cylinder lateral surface of
radius x.. The surface is equal to:

~S(x2'Y2)=~h(x2,h)·~I(x2'Y2)' (3)
where:

M(X2,YJ=~<P',rx~ + Y~ =~<P'X2 .~1+tg2e =~<P'X2 ._1_,
cose

(4)
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I1cp I1cp 111
because for smali ,1cPwe have tg - == - = I

2 2 2'l/x~ + y;
By analogy we get:

( ) [ ]
I 2 2 sin Ai) ,1e

,1hx2,y] =x] tg(8+,18)-tg8 =,1CPljx2 +Yz =x2 e,1e e =X2-Ze
(5)

GOs( + ) .GOS GOS

because: sin l1e == 118 and cos(8 + 118) == cose
Sound intensity at the point of co-ordinates X2.Y2 is equal to:

) P(xJ)
l(x2'Y2 = ( )I1S x2' Y2 . cos8

after substituting relations (4) and (5) to the above formula we get:

l( )= l(xJ ,0)·118· MI" x~ .cos3 e = I(XJ ,0)· x; .cos2 8
X"Y2 2- I1qJ. x2 ·118 . x2 � cos e x2

(6)

(7)
hence we get:

l(x2'Y2) = XJ2 ·cos28
l(x},Q) xi

Let us divide surface I1S(XI,O)into n, surfaces as given in Fig. 2.
Fig.2. Division of surface LiS into elementary surfaces.

2
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l1h(x,O)
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Lil(x,O)

Per one surface there is power Pi which is equal to:

P = P(x) where n = ~h(x,O)
} nJ 1 oh

Therefore, intensity in point x, is:

l(x,O) = p(x)
I1h(x,O)'I1I(x,O)

(8)

I1h(x,O)' LiI(x,O)
(9)

We assume that from every smalI surface a ray carrying pow er p, comes out. The ray
moves in straight lines or curves in a vertical piane exclusively. Let us now assume that the
intensity at a random point is proportional to number n(x,y) of rays cutting across the surface
of a cylinder I1h(XI,O) high. Let number A be the proportionality coefficient. This can be
written as:

l(x,y)=n2 ·A
The power cutting across surface (X1,0)high is:

p(x, y) = n2 . PJ,

(10)

(11)
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and wave intensity is equal to:

l(x y)= p(x,y) = PI ·n2 �

r , t.h(x,O).t.t(x,y)·cose M(x,O)·t.t(x,y)·cose
After substituting expression (8) we get:

I(x y)= ~ ~h(x,O). ~1(x,O)· I(x,O) = n2 � I (x,O). ~1(x,O)
, ni t.h(x,O). t.t (x, y'). cos e ni ~l (x, y). cos e

After considering expressions (1) and (4) we then have:

( )
n2 I( O) t.r.p.XI . cose n2 I( O) XI (14)l x,y =_. x, . =_. X, '-,
ni t.r.p.x2 . cose ni x2

hence the final relation which binds field intensity with the number of rays cutting across a
unit surface adopts the form:

I(x, y) n2 XI (15)
I(x,O) =~.~

Following the above derivation, the methodology of computing field intensity is to:
generate a certain number of rays coming out of the source at equal angular

distances,
divide the depth of the water area into a number of layers of the same thickness

which will be a num ber that will guarantee the desired resolution of the field
intensity computed,
determine field intensity near the source at distance x], assurning spherical

propagation,
determine the number of rays cutting across the consecutive layers at distance Xl,

determine the routes of sound rays,
determine the number of rays cutting across the consecutive layers at distance X2,
calculate sound intensity using formuła (15),

Computations following this pattern are repeated for a number of X2distances until the desired
resolution of intensity distribution in a horizontal section is achieved. The generał accuracy of
the computations depends on the number of rays generated by the source, The selection
criterion for the number of rays could be an interesting dynamics of the changes in intensity in
the area being computed. The dynamics is determined from formula (15) by inserting n2=1.

(12)

(13)

2. RESULTS OF COMPUTATIONS OF ACOUSTIC FIELD INTENSITY

Fig. 3 shows the distribution of acoustic field intensity which was determined using a
theoretical distribution of acoustic velocity. The X-axis shows the distance from the source
while the Y-axis show s the depth. Shades of grey illustrate wave intensity with black showing
the level of intensity equal to O dB and white the level of intensity 40 dE less than when 3 m
away from the source. It was assumed that sound velocity on the surface is 1500 mis and
dropping linearly to 1400 mis at 40 m deep to increase linearly and reach 1475 mis at a depth
ot 70 m. The souree ot a eonie beam is plaeed at 35 m deep. The eomputed sound intensity in
caustic area is 6.5 dB higher than the intensity which would oceur in this place in spherical
propagation.
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Fig.3. Distribution ot sound intensity in media with aeoustie duet. The axis ot the duet is at 40
, the souree is at 35 m
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Fig.4. Distribution ot sound intensity in media with aeoustie duet. The axis of the duet is at 40
fi deep, the souree is at 45 fi deep
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3. CONCLUSIONS
Numerical tests of the above method were made both for theoretical and actual distributions
of sound velocity. For some theoretical distributions of sound velocity we could compare the
results of the computations with the results of analytical computations. The result of the
comparison was fully satisfactory. Some random measurements of sound intensity taken so
far also eonfirm the effectiveness of the method.
A feature that sets a certain limit on the method is the time it takes to complete the
computations. It is much longer than the traditional method of determining field intensity
distribution. The reason for that is that the required number of sound rays is much bigger in
this method. This is the cost to be paid for solving the problem of caustics. I
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