PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hybrid active fault-tolerant control scheme for wind energy conversion system based on permanent magnet synchronous generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind energy has achieved prominence in renewable energy production. There- fore, it is necessary to develop a diagnosis system and fault-tolerant control to protect the system and to prevent unscheduled shutdowns. The presented study aims to provide an experimental analysis of a speed sensor fault by hybrid active fault-tolerant control (AFTC) for a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). The hybrid AFTC switches between a traditional controller based on proportional integral (PI) controllers under normal conditions and a robust backstepping controller system without a speed sensor to avoid any deterioration caused by the sensor fault. A sliding mode observer is used to estimate the PMSG rotor position. The proposed controller architecture can be designed for performance and robustness separately. Finally, the proposed methodwas successfully tested in an experimental set up using a dSPACE 1104 platform. In this experimental system, the wind turbine with a generator connection via a mechanical gear is emulated by a PMSM engine with controled speed through a voltage inverter. The obtained experimental results show clearly that the proposed method is able to guarantee service production continuity for the WECS in adequate transition.
Rocznik
Strony
485–--497
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • Laboratoire de Génie Energétique et Génie Informatique L2GEGI, Université Ibn Khaldoun de Tiaret, Tiaret, Algérie
autor
  • Laboratoire de Génie Energétique et Génie Informatique L2GEGI, Université Ibn Khaldoun de Tiaret, Tiaret, Algérie
autor
  • Laboratoire d’Informatique et d’Automatique pour les Systèmes LIAS Université de Poitiers, Poitiers, France
Bibliografia
  • [1] Ackermann T., Wind power in power systems, Wiley Online Library (2005).
  • [2] Walford C.A., Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs, United States, Department of Energy (2006).
  • [3] Freire N.M.A., Estima J.O., Cardoso A.J.M., A new approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems, Proceedings of IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, pp. 2083–2090 (2012).
  • [4] Hassaine S., Moreau S., Bensmaine F., Design and hardware implementation of PMSM sliding mode control in SISO and MIMO cases, Proceedings of IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, pp. 762–767 (2014).
  • [5] Gajewski P., Pieńkowski K., Advanced control of direct-driven PMSG generator in wind turbine system, Archives of Electrical Engineering, vol. 65, no. 4, pp. 643–656 (2016).
  • [6] Cheng M., Zhu Y., The state of the art of wind energy conversion systems and technologies: A review, Energy Conversion and Management, vol. 88, pp. 332–347 (2014).
  • [7] Talebi N., Sadrnia M.A., Darabi A., Dynamic response of wind energy conversion systems under various faults, International Journal of Engineering Systems Modelling and Simulation, vol. 7, no. 2, pp. 80–94 (2015).
  • [8] Kim Y.-M., Data–driven modelling, control, and fault detection of wind turbine systems, International Journal of System Control and Information Processing, vol. 1, no. 3, pp. 298–318 (2014).
  • [9] Byington C.S., Watson M., Edwards D., Stoelting P., A model-based approach to prognostics and health management for flight control actuators, Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA, pp. 3551–3562 (2004).
  • [10] Fourlas G.K., An approach towards fault tolerant of model-based hybrid control systems, International Journal of Applied Systemic Studies, vol. 5, no. 3, pp. 199–214 (2014).
  • [11] Sobański P., Orłowska-Kowalska T., Detection of single and multiple IGBTs open-circuit faults in a field-oriented controlled induction motor drive, Archives of Electrical Engineering, vol. 66, no. 1, pp. 89–104 (2017).
  • [12] Toumi D., Boucherit M., Tadjine M., Observer-based fault diagnosis and field oriented fault tolerant control of induction motor with stator inter-turn fault, Archives of Electrical Engineering, vol. 61, no. 2, pp. 165–188 (2012).
  • [13] Bourogaoui M., Sethom H.B.A., Belkhodja I.S., Speed/position sensor fault tolerant control in adjustable speed drives – A review, ISA Transaction, vol. 64, pp. 269–284 (2016).
  • [14] Li H., Qu L., Qiao W., Wei C., Current and rotor position sensor fault detection and isolation for permanent magnet synchronous generators in wind applications, In IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, pp. 2810–2815 (2017).
  • [15] Akrad A., Hilairet M., Diallo D., Design of a Fault-Tolerant Controller Based on Observers for a PMSM Drive, IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1416–1427 (2011).
  • [16] Tripathi S.M., Tiwari A.N., Singh D., Controller Design for a Variable-Speed Direct-Drive Permanent Magnet Synchronous Generator-Based Grid-Interfaced Wind Energy Conversion System Using D-Partition Technique, IEEE Access, vol. 5, pp. 27297–27310 (2017).
  • [17] Tripathi S.M., Tiwari A.N., Singh D., Optimum design of proportional-integral controllers in grid-integrated PMSG-based wind energy conversion system, International Transactions on Electrical Energy Systems, vol. 26, no. 5, pp. 1006–1031 (2016).
  • [18] Tahri A., Hassaine S., Moreau S., A robust control for permanent magnet synchronous generator associated with variable speed wind turbine, Journal of Electrical Engineering, vol. 15, no. 2, pp. 1–8 (2015).
  • [19] Raisemche A., Boukhnifer M., Larouci C., Diallo D., Two active fault-tolerant control schemes of induction-motor drive in EV or HEV, IEEE Transactions on Vehicular Technology, vol. 63, no. 1, pp. 19–29 (2014).
  • [20] Rothenhagen K., Fuchs F.W., Current sensor fault detection, identification, and reconfiguration for doubly fed induction generators, Proceeding of Industrial Electronics Society33rd Annual Conference of the IEEE, Taipei, Taiwan, pp. 1115–1120 (2007).
  • [21] Chi S., Xu L., Zhang Z., Sliding mode sensorless control of PM synchronous motor for direct-driven washing machines, Proceeding of Industry Applications Conference 41st IAS Annual Meeting Conference Record of the 2006 IEEE, Tampa, FL, USA, pp. 873–879 (2006).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d98492b-31a8-4cd8-b67e-b1c83e790ea3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.