PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrochemical synthesis of Zinc oxide/polymer/phosphotungstic acid composites for a UV detector

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ZnO is an ideal material for UV detection. However, due to the surface effect of ZnO, the photosensitivity of the ZnO based UV detector needs to be improved. In this study, we deposited a hydroxyl group functionalized (3,4-propylenethiophene) polymer (PProDOT-OH) film onto a hydrothermally grown ZnO nanoarray by electro-chemical deposition method to prevent the corrosion of ZnO by phosphotungsten acid (PWA), and then PWA was drip-coated on the composite film to prepare the ZnO/PProDOT-OH/PWA composite based UV detector. The structure and morphology of the composite were characterized by SEM, UV–vis, FT-IR, XRD, Raman, EDS, XPS analysis, illustrating the phosphotungstic acid was uniformly coated on ZnO/PProDOT-OH surface and con-firming the composite was successfully synthesized. The UV detection performance was studied through preparing a UV detector with the composite material and results indicate that the introduction of PWA could enhance the responsivity of the ZnO/PProDOT-OH composite-based UV detector.
Słowa kluczowe
Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wz.
Twórcy
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
  • Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 830046 P.R. China.
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
autor
  • College of Chemistry and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, Xinjiang, PR China.
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
autor
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
autor
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
autor
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
  • Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046 P.R. China
Bibliografia
  • 1. Xing, Y.J., Xi, Z.H., Xue, Z.Q., Zhang, X.D., Song, J.H, Wang, R.M., Xu, J., Song, Y., Zhang, S.L. & Yu, D.P. (2003). Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett., 83, 1689–1691. DOI: 10.1063/1.1605808.
  • 2. Leung, Y.H., Djurisic, A.B., Choy, W., Chan, W.K. & Cheah, K.W. (2004). ZnO nanostructures prepared by different methods. Mrs Proceedings. 818, M8.19.11. DOI: 10.1557/PROC-818-M8.19.1.
  • 3. Gozeh, B.A., Karabulut, A., Yildiz, A. & Yakuphanoglu, F. (2018). Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloys Compd., 732, 16–24. DOI: 10.1016/j.jallcom.2017.10.167.
  • 4. Zheng, W., Ding, R., Yan, X. & He, G. (2017). PEG induced tunable morphology and band gap of ZnO. Mater. Lett., 201, 85–88. DOI: 10.1016/j.matlet.2017.04.133.
  • 5. Ocak, Y.S. (2012). Electrical characterization of DC sputtered ZnO/pSi heterojunction. J. Alloys Compd., 513, 130–134. DOI: 10.1016/j. jallcom.2011.10.005.
  • 6. Liu, K., Sakurai, M. & Aono, M. (2010). ZnO-Based Ultraviolet Photodetectors. Sensors. 10, 8604–8634. DOI: 10.3390/s100908604.
  • 7. Kind, H., Yan, H., Messer, B., Law, M. & Yang, P. (2002). Nanowire ultraviolet photodetectors and optical switches. Adv. Mater., 14, 158–160. DOI:10.1002/1521–4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W.
  • 8. Suo, B., Wu, W., Qin, Y., Cui, N., Bayerl, D.J., Wang, X. (2011). High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 21, 4464–4469. DOI: 10.1002/adfm.201101319.
  • 9. Pope, M.T. & Müller, A. (2010). Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed., 30, 34–48. DOI: 10.1002/anie.199100341.
  • 10. Song, Y.F. & Tsunashima, R. (2012). Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev., 41, 7384. DOI: 10.1039/c2cs35143a.
  • 11. Pope, M.T. & Müller, A. (2002). Polyoxometalate chemistry from yopology via self-assembly to applications || introduction to polyoxometalate chemistry : from topology via self-assembly to applications, 1–6. DOI: 10.1007/0-306-47625-8_1.
  • 12. Dolbecq, A., Dumas, E., Mayer, C.R. & Mialane, P. (2010). ChemInform abstract: hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem. Rev., 110, 6009–6048. DOI: 10.1021/cr1000578.
  • 13. Hill, C.L. & Bouchard, D.A. (1985). Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates. J. Am. Chem. Soc., 107, 5148–5157. DOI: 10.1021/ja00304a019.
  • 14. Misono, M., Okuhara, T., Ichiki, T., Arai, T. & Kanda, Y. (1987). Pseudoliquid behavior of heteropoly compound catalysts. Unusual pressure dependencies of the rate and selectivity for ethanol dehydration. Cheminform. 18, 5535–5536. DOI: 10.1002/chin.198748022.
  • 15. Guo, Y., Hu, Ch., Jiang, S., Guo, C., Yang, Y., Wang, E., (2002). Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates. Appl. Catal. B: Environ. DOI: 10.1016/S0926-3373(01)00260-0.
  • 16. Gkika, E., Troupis, A., Hiskia, A. & Papaconstantinou, E. (2006). Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Appl. Catal. B Environ. 62, 28–34. DOI: 10.1016/j. apcatb.2005.06.012.
  • 17. Troupis, A., Hiskia, A. & Papaconstantinou, E. (2003). Photo-catalytic reduction—recovery of silver using polyoxometalates. Appl. Catal. B Environ. 42, 305–315. DOI: 10.1016/S0926-3373(02)00264-3.
  • 18. Maldotti, A., Amadelli, R., Varani, G., Tollari, S. & Porta, F. (1994). Photocatalytic processes with polyoxotungstates: oxidation of cyclohexylamine. Inorg. Chem. 33, 2968–2973. DOI: 10.1021/ic00091a041.
  • 19. Papaconstantinou, E., Ioannidis, A., Hiskia, A., Argitis, P., Dimotikali, D. & Korres, S. (1993). Photocatalytic processes by polyoxometalates. splitting of water. The role of dioxygen. Molec. Engin. 3, 231–239. DOI: 10.1007/BF00999635.
  • 20. Hiskia, A. & Papaconstantinou, E. (1992). Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten. Catalyst regeneration by dioxygen. Inorg. Chem., 31, 163–167. DOI: 10.1021/ic00028a007.
  • 21. Sun, Z., Zhang, Y., Na, L., Lin, X. & Wang, T. (2015). Enhanced photoconductivity of a polyoxometalate–TiO2 composite for gas sensing applications. J. Mater. Chem. C. 3, 6153–6157. DOI: 10.1039/c5tc00904a.
  • 22. Benjamin D. Reeves, Unur, E., Ananthakrishnan, N. & Reynoldset J.R. (2007). Defunctionalization of ester-substituted electrochromic dioxythiophene polymers. Macromolecules. 40, 5344–5352. DOI: 10.1021/ma070046d.
  • 23. Yoon, Y.C., Park, K.S. & Kim, S.D. (2015). Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods. Thin Solid Films. 597, 125–130. DOI: 10.1016/j.tsf.2015.11.040.
  • 24. Ghosh, R., Kundu, S., Majumder, R., Roy, S. Das, S., Banerjee, A., Guria, U., Banerjee, M., Bera, M.K., Subhedar, K.M. & Chowdhury, M.P. (2019). One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl. Nanosci. DOI: 10.1007/s13204-019-00985-8.
  • 25. Jamal, R., Li, Z., Wang, M., Qin, Z. & Abdiryim, T. (2016). Synthesis of poly(3,4-propylenedioxythiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Progress Natur. Sci. 26, 32–40. DOI: 10.1016/j.pnsc.2016.01.001.
  • 26. Yuan, X.Y., Luo, H.A., Yang, N.F. & Liu, Y.J. (2006). Synthesis of long-chain pentaerythritol acetals catalyzed by phosphotungstic acid supported on active carbon under microwave irradiation. J. Hunan Univ. Nat. Sci. 33, 99–102. DOI: 10.1038/sj.cr.7310110.
  • 27. Katiyar, A., Kumar, N. & Srivastava, A. (2018). Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Mater. Today: Proceed. 5, 9144–9147. DOI: 10.1016/j. matpr.2017.10.034.
  • 28. Moura, A.P., Lim a, R.C., Moreira, M.L., Volanti, D.P., Espinosa, J.W.M., Orlandi, M.O., Pi zani, P.S., Va rela, J.A. & L ongo, E., (2010). ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics. 181, 775–780. DOI: 10.1016/j.ssi.2010.03.013.
  • 29. Chang, S.J., Duan, B.G., Hsiao, C.H., Young, S.J. & Wu, S.L. (2013). Low-frequency noise characteristics of in-doped ZnO ultraviolet photodetectors. IEEE Phot. Technol. Letters. 25, 2043–2046. DOI: 10.1109/LPT.2013.2280719.
  • 30. Mandalapu, L.J., Xiu, F.X., Yang, Z. & Liu, J.L. (2007). Ultra-violet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-State Electron. 51, 1014–1017. DOI: 10.1016/j.sse.2007.05.009.
  • 31. Mak, A., Mks, B., Kkn, A. & Sbk, A. Defect and strain modulated highly efficient ZnO UV detector: Temperature and low-pressure dependent studies. Appl. Surf. Sci. 505. DOI: 10.1016/j.apsusc.2019.144365.
  • 32. Hanna, B., Surendran, K.P. & Narayanan Unni, K.N. (2018). Low temperature-processed ZnO thin films for p-n junction-based visible-blind ultraviolet photodetectors. RSC Advanc. 8, 37365–37374. DOI: 10.1039/C8RA07312K.
  • 33. Weng, WY., Chang S.J., Hsu, C.L., Hsueh, T.J., Chang, S.P. (2010). A lateral ZnO nanowire photodetector prepared on glass substrate. J. Electr. Soc. 157, K30–K33. DOI: 10.1149/1.3264650.
  • 34. Fan, H.-B., Yang, S.-Y., Zhang, P.-F., Wei H.-Y., Liu X.-L., Jiao, Ch.-M., Zhu, Q.-S., Chen, Y.-H. & Wang, Z.-G. (2008). Cross-di sciplinary physics and related areas of science and technology: a simple route of morphology control and structural and optical properties of ZnO grown by metal-organic chemical vapour deposition. Chin. Phys. Letters. 25, 3063–3066. DOI: 10.1088/0256-307X/25/8/088.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d927b63-4a61-4680-b513-1efcf33b240a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.