PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroponics agriculture as a modern agriculture technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Hydroponics, also known as controlled environment agriculture, is a method of cultivating plants and herbs without soil using mineral-supplemented solutions. Agriculture biotechnology enhances its wings on developing genetically modified plants for expanding crop yield and introducing characteristic features such as growing seasonal crops throughout the year, weather-resistant, and pest resistance. Compared to traditional agriculture, hydroponic cultivation yields high-quality crops with 90% more efficient use of water. Therefore, hydroponic cultivation could be considered a succeeding future of agriculture. In this context, understanding agriculture through the hydroponic route is vital for the efficient cultivation of crops. This review elaborates on the different classes of hydroponic systems and the factors that enable the systematic elements of the frame-up. Design/methodology/approach: The significant intent of this review is to provide information on distinct hydroponic systems. Findings: The present review reports a comprehensive discussion about the significance of the hydroponics system, its mechanism, nutrient solution preparation, types of hydroponic setup, and the challenges faced and would light up the knowledge in the same. Originality/value: This review focus on the current feasible hydroponic method of crop cultivation.
Rocznik
Strony
25--35
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
autor
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Physics, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
autor
  • Department of Medical Genetics, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
autor
  • Department of Medical Genetics, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
  • Department of Physics, S.T. Hindu College, Nagercoil, Tamilnadu, India
autor
  • Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
Bibliografia
  • [1] A. Sulemana, S.A. Adjei, Microfinance impact on agricultural production in developing countries: a study of the Pru District in Ghana, International Journal of Academic Research and Reflection 3/3 (2015) 26-44.
  • [2] A. du Toit, D. Neves, The government of poverty and the arts of survival: mobile and recombinant strategies at the margins of the South African economy, The Journal of Peasant Studies 41/5/1 (2014) 833-853. DOI: https://doi.org/10.1080/03066150.2014.894910
  • [3] N. Van Suu, Industrialization and Urbanization in Vietnam: How Appropriation of Agricultural Land Use Rights Transformed Farmers’ Livelihoods in a Peri-Urban Hanoi Village?, Final Report of an EADN Individual Research Grant Project, EADN Working Paper 38, 2009.
  • [4] C. Treftz, ST. Omaye, Hydroponics: Potential for augmenting sustainable food production in non-arable regions, Nutrition and Food Science 46/5 (2016) 672-684. DOI: https://doi.org/10.1108/NFS-10-2015-0118
  • [5] A. Sarkar, M. Majumder, Economic of cubical and semi-spherical shape stacked protected farms for marginal farmers, Agricultural Engineering International: CIGR Journal 21/2 (2019) 1-6.
  • [6] W. Radzki, F.G. Mañero, E. Algar, J.L. García, A. García-Villaraco, B.R. Solano, Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture, Antonie Van Leeuwenhoek 104/3 (2013) 321-330. DOI: https://doi.org/10.1007/s10482-013-9954-9
  • [7] R. Azarmi, S.J. Tabatabaei, N. Chaparzadeh, Interactive effects of Mg and shading on the yield, physiology and antioxidant activity in cucumber grown in hydroponics, Journal of Plant Process and Function 6/22 (2018) 63-72.
  • [8] Q. Li, X. Li, B. Tang, M. Gu, Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture, Horticulturae 4/4 (2018) 35. DOI: https://doi.org/10.3390/horticulturae4040035
  • [9] D. Dhanasekaran, M. Jasmine, Rooting behavior of certain foliage ornamentals grown under hydroponic nutrient solutions, Annals of Plant and Soil Research 21/4 (2019) 346-350.
  • [10] K. Jeyasubramanian, U.U.G. Thoppey, G.S. Hikku, N. Selvakumar, A. Subramania, K. Krishnamoorthy, Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles, RSC Advances 6/19 (2016) 15451-15459. DOI: https://doi.org/10.1039/C5RA23425E
  • [11] N.C. Uren, Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants, in: S. Willig, Z. Varanini, P. Nannipieri (eds), The rhizosphere, CRC Press, Boca Raton, 2000, 35-56.
  • [12] M.H. Jensen, Hydroponic culture for the tropics: opportunities and alternatives, Asian and Pacific Council, Food Technology Center, 1991.
  • [13] G. Schmilewski, The role of peat in assuring the quality of growing media, Mires and Peat 3 (2008) 02.
  • [14] J.E. Rakocy, Aquaponics—Integrating fish and plant culture, aquaculture production systems, in: J.H. Tidwell (ed), Aquaculture Production Systems, Wiley-Blackwell, Oxford, 2012, 344-386. DOI: https://doi.org/10.1002/9781118250105.ch14
  • [15] K. Al Akeel, Empirical investigation of water pollution control through use of Phragmites australis, PhD Thesis, Brunel University School of Engineering and Design, London, 2013.
  • [16] P. Morard, J. Silvestre, Plant injury due to oxygen deficiency in the root environment of soilless culture: a review, Plant and Soil 184/2 (1996) 243-254. DOI: https://doi.org/10.1007/BF00010453
  • [17] R.A. Pastorok, M.W. Lorenzen, T.C. Ginn, Environmental Aspects of Artificial Aeration and Oxygenation of Reservoirs: A Review of Theory, Techniques, and Experiences, Final Report, U.S. Army Engineer Waterways Experiment Station, 1982.
  • [18] D.R. Hoagland, D.I. Arnon, The water-culture method for growing plants without soil, Circular 347, California Agricultural Experiment Station, 1950.
  • [19] D.K. Tripathi, V.P. Singh, D.K. Chauhan, S.M. Prasad, N.K. Dubey, Role of macronutrients in plant growth and acclimation: recent advances and future prospective, in: P. Ahmad, M. Wani, M. Azooz, L.S. Phan Tran (eds), Improvement of Crops in the Era of Climatic Changes, Springer, New York, 2014, 197-216. DOI: https://doi.org/10.1007/978-1-4614-8824-8_8
  • [20] M.F. Mondal, M. Asaduzzaman, M. Ueno, M. Kawaguchi, S. Yano, T. Ban, H. Tanaka, T. Asao, Reduction of potassium (K) content in strawberry fruits through KNO3 management of hydroponics, The Horticulture Journal 86/1 (2017) 26-36. DOI: https://doi.org/10.2503/hortj.MI-113
  • [21] V. Römheld, E.A. Kirkby, Research on potassium in agriculture: needs and prospects, Plant and Soil 335/1 (2010) 155-180. DOI: https://doi.org/10.1007/s11104-010-0520-1
  • [22] R.A. Sharma, A.R. Azad A Research Note on Chlorosis (Yellowing) in Plants: A Serious Problem and its Remedy, Agriculture and Food: e-Newsletter 2/10 (2020).
  • [23] W.H. Allaway, The effect of soils and fertilizers on human and animal nutrition, Agriculture Information Bulletin No. 378 (1975) 1-52.
  • [24] Z.-A. Huang, D.-A. Jiang, Y. Yang, J.-W. Sun, S.-H. Jin, Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants, Photosynthetica 42/3 (2004) 357-364. DOI: https://doi.org/10.1023/B:PHOT.0000046153.08935.4c
  • [25] A.M. Rychter, I.M. Rao, Role of phosphorus in photosynthetic carbon metabolism, in: M. Pessarakli (ed), Handbook of Photosynthesis, Taylor and Francis Group, 2005, 123-48.
  • [26] R. Huang, C. Fang, X. Lu, R. Jiang, Y. Tang, Transformation of phosphorus during (hydro) thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling, Environmental Science and Technology 51/18 (2017) 10284-10298. DOI: https://doi.org/10.1021/acs.est.7b02011
  • [27] A. McCauley, C. Jones, J. Jacobsen, Plant nutrient functions and deficiency and toxicity symptoms, Nutrient Management Module 9 (2009) 1-16.
  • [28] K. Mengel, E.A. Kirkby, H. Kosegarten, T. Appel, Nutrient uptake and assimilation, in: K. Mengel, E.A. Kirkby, H. Kosegarten, T. Appel (eds), Principles of Plant Nutrition, Springer, Dordrecht, 2001, 111-179. DOI: https://doi.org/10.1007/978-94-010-1009-2_3
  • [29] R. Uchida, Essential nutrients for plant growth: nutrient functions and deficiency symptoms, Plant Nutrient Management in Hawaii’s Soils 4 (2000) 31-55.
  • [30] P.J. White, M.R. Broadley, Calcium in plants, Annals of Botany 92/4 (2003) 487-511. DOI: https://doi.org/10.1093/aob/mcg164
  • [31] E.W. Simon, The symptoms of calcium deficiency in plants, New Phytologist 80 (1978) 1-15.
  • [32] Y.P. Abrol, A. Ahmad (eds), Sulphur in plants, Springer, Dordrecht, 2003. DOI: https://doi.org/10.1007/978-94-017-0289-8
  • [33] J.I. Alvarez-Leite, Nutrient deficiencies secondary to bariatric surgery, Current Opinion in Clinical Nutrition and Metabolic Care 7/5 (2004) 569-575.
  • [34] E. Keleş, P. Kefeli, Determination of student misconceptions in “photosynthesis and respiration” unit and correcting them with the help of cai material, Procedia - Social and Behavioral Sciences 2/2 (2010) 3111-3118. DOI: https://doi.org/10.1016/j.sbspro.2010.03.474
  • [35] C. Shand, (2007). Plant Nutrition for Food Security. A Guide for Integrated Nutrient Management. By R. N. Roy, A. Finck, G. J. Blair and H. L. S. Tandon. Rome: Food and Agriculture Organization of the United Nations (2006), pp. 348, US $70.00. ISBN 92-5-105490-8. Experimental Agriculture, 43(1), 132-132. DOI: https://doi.org/10.1017/S0014479706394537
  • [36] J.F. Ma, Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Science and Plant Nutrition 50/1 (2004) 11-18. DOI: https://doi.org/10.1080/00380768.2004.10408447
  • [37] F.J.M. Maathuis, Physiological functions of mineral macronutrients, Current Opinion in Plant Biology 12/3 (2009) 250-258. DOI: https://doi.org/10.1016/j.pbi.2009.04.003
  • [38] S.S. Merchant, The elements of plant micronutrients, Plant Physiology 154/2 (2010) 512-515. DOI: https://doi.org/10.1104/pp.110.161810
  • [39] M. Zekri, T.A. Obreza, Micronutrient deficiencies in citrus: iron, zinc, and manganese, EDIS 2003 (2003) SL 204. DOI: https://doi.org/10.32473/edis-ss423-2003
  • [40] C.A. Hebbern, K.H. Laursen, A.H. Ladegaard, S.B. Schmidt, P. Pedas, D. Bruhn, J.K. Schjoerring, D. Wulfsohn, S. Husted, Latent manganese deficiency increases transpiration in barley (Hordeum vulgare), Physiologia Plantarum 135/3 (2009) 307-316. DOI: https://doi.org/10.1111/j.1399-3054.2008.01188.x
  • [41] N. Kawagashira, Y. Ohtomo, K. Murakami, K. Matsubara, J. Kawai, P. Carninci, Y. Hayashizaki, S. Kikuchi, K. Higo, Multiple zinc finger motifs with comparison of plant and insect, Genome Informatics 12 (2001) 368-369. DOI: https://doi.org/10.11234/gi1990.12.368
  • [42] D.P. Schachtman, R.J. Reid, S.M. Ayling, Phosphorus uptake by plants: from soil to cell, Plant Physiology 116/2 (1998) 447-453. DOI: https://doi.org/10.1104/pp.116.2.447
  • [43] N. Pradhan, R. Rani, J. David, A Review on Utility of An Astonishing Fruit: Psidium Guajava (Guava), Journal of Science and Technology 06/01 (2021) 60-72.
  • [44] B. Dell, L. Huang, Physiological response of plants to low boron, Plant and Soil 193/1 (1997) 103-120. DOI: https://doi.org/10.1023/A:1004264009230
  • [45] G. Schwarz, R.R. Mendel, Molybdenum cofactor biosynthesis and molybdenum enzymes, Annual Review of Plant Biology 57 (2006) 623-647. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105437
  • [46] E.A. Waraich, R. Ahmad, M.Y. Ashraf, Saifullah, M. Ahmad, Improving agricultural water use efficiency by nutrient management in crop plants, Acta Agriculturae Scandinavica, Section B - Soil and Plant Science 61/4 (2011) 291-304. DOI: https://doi.org/10.1080/09064710.2010.491954
  • [47] W. Claussen, Growth, water use efficiency, and prolinę content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration, Plant and Soil 247/2 (2002) 199-209. DOI: https://doi.org/10.1023/A:1021453432329
  • [48] S. Carruthers, Copper: Deficiency and toxicity, Practical Hydroponics and Greenhouses 173 (2016) 50-53.
  • [49] F.G. Schröder, J.H. Lieth, Irrigation control in hydroponics, in: D. Savvas, H. Passam (eds), Hydroponic Production of Vegetables And Ornamentals, 2002, 263-298.
  • [50] R.W. Langhans, T.W. Tibbitts (eds), Plant growth chamber handbook, North Central Regional Research Publication No. 340, Iowa Agriculture and Home Economics Experiment Station Special Report No. 99, 1997.
  • [51] J.S. Amthor, The role of maintenance respiration in plant growth. Plant, Cell and Environment 7/8 (1984) 561-569. DOI: https://doi.org/10.1111/1365-3040.ep11591833
  • [52] O.K. Atkin, D. Bruhn, V.M. Hurry, M.G. Tjoelker, Evans Review No. 2: The hot and the cold: unravelling the variable response of plant respiration to temperature, Functional Plant Biology 32/2 (2005) 87-105. DOI: https://doi.org/10.1071/FP03176
  • [53] S.M. Alam, Nutrient uptake by plants under stress conditions, in: M. Pessarakli (ed), Handbook of Plant and Crop Stress, Second Edition, Marcel Dekker, New York - Basel, 1999, 285-313.
  • [54] A.K. Islam, D.G. Edwards, C.J. Asher, pH optima for crop growth, Plant and Soil 54/3 (1980) 339-357. DOI: https://doi.org/10.1007/BF02181830
  • [55] M.R. Rahim, R.M. Akir, Automated pH Monitoring and Controlling for Hydroponics Cultivation, Evolution in Electrical and Electronic Engineering 2/2 (2021) 775-782.
  • [56] R.M. Mugundhan, M. Soundaria, V. Maheswari, P. Santhakumari, V. Gopal, “Hydroponics" - a novel alternative for geoponic cultivation of medicinal plants and food crops, International Journal of Pharma and Bio Sciences 2/2 (2011) P-296.
  • [57] I.A. Lakhiar, G. Jianmin, T.N. Syed, F.A. Chandio, N.A. Buttar, W.A. Qureshi, Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system, Journal of Sensors 2018 (2018) 8672769. DOI: https://doi.org/10.1155/2018/8672769
  • [58] A. Hussain, K. Iqbal, S. Aziem, P. Mahato, A.K. Negi, A review on the science of growing crops without soil (soilless culture)-a novel alternative for growing crops, International Journal of Agriculture and Crop Sciences 7/11 (2014) 833-842.
  • [59] N. Sharma, S. Acharya, K. Kumar, N. Singh, O.P. Chaurasia, Hydroponics as an advanced technique for vegetable production: An overview, Journal of Soil and Water Conservation 17/4 (2018) 364-371. DOI: http://dx.doi.org/10.5958/2455-7145.2018.00056.5
  • [60] S. Lee, J. Lee, Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods, Scientia Horticulturae 195 (2015) 206-215. DOI: https://doi.org/10.1016/j.scienta.2015.09.011
  • [61] D.A. Kluko, Home hydroponics, Popular Mechanics 2 (2017) 85-87.
  • [62] A. Hamza, R.E. Abdelraouf, Y.I. Helmy, S.M. El-Sawy, Using deep water culture as one of the important hydroponic systems for saving water, mineral fertilizers, and improving the productivity of lettuce crop, International Journal of Health Sciences 6/S9 (2022) 2311-2331. DOI: https://doi.org/10.53730/ijhs.v6nS9.12932
  • [63] M. Schwarz, Soilless Culture Management, Springer Berlin, Heidelberg, 1995. DOI: https://doi.org/10.1007/978-3-642-79093-5
  • [64] K.A. El-Kazzaz, A.A. El-Kazzaz, Soilless agriculture a new and advanced method for agriculture development: an introduction, Agricultural Research and Technology: Open Access Journal 3/2 (2017) 63-72.
  • [65] D.N. Gilmour, C. Bazzani, R.M. Nayga Jr, H.A. Snell, Do consumers value hydroponics? Implications for organic certification, Agricultural Economics 50/6 (2019) 707-721. DOI: https://doi.org/10.1111/agec.12519
  • [66] M.D. Sardare, S.V. Admane, A review on plant without soil-hydroponics, International Journal of Research in Engineering and Technology 2/3 (2013) 299-304.
  • [67] C. Lei, N.J. Engeseth, Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce, LWT 150 (2021) 111931. DOI: https://doi.org/10.1016/j.lwt.2021.111931
  • [68] M.R. Talukder, M. Asaduzzaman, H. Tanaka, T. Asao, Electro-degradation of culture solution improves growth, yield and quality of strawberry plants grown in closed hydroponics, Scientia Horticulturae 243 (2019) 243-251. DOI: https://doi.org/10.1016/j.scienta.2018.08.024
  • [69] M.S. Saleem, T.S. Batool, M.F. Akbar, S. Raza, S. Shahzad, Efficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions, Egyptian Journal of Biological Pest Control 29/1 (2019) 37. DOI: https://doi.org/10.1186/s41938-019-0138-4
  • [70] W. Gao, D. He, F. Ji, S. Zhang, J. Zheng, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach, Agronomy 10/8 (2020) 1082. DOI: https://doi.org/10.3390/agronomy10081082
  • [71] S. Hopkinson, M. Harris, Effect of pH on Hydroponically Grown Bush Beans (phaseolus vulgaris), International Journal of Environment Agriculture and Biotechnology 4/1 (2019) 142-145. DOI: https://dx.doi.org/10.22161/ijeab/4.1.23
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d8c6cd2-fdd0-445d-8c46-0a08d858cda0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.