PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-parametric quasi-Fibonacci numbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the discussion on the two parametric quasi–Fibonacci numbers. The fundamental recurrence and reduction formulae for arguments and indices of these quasi–Fibonacci numbers are presented here. The matrix representations of the considered numbers are described and their applications are indicated. Moreover, a number of connections of the two parametric quasi-Fibonacci numbers with the sequences collected in the OEIS encyclopaedia are noted. Despite quite large volume of this elaboration, the Authors believe that this is just some kind of announcement, or an introduction to a definitely larger and detailed discussion including, above all, the applications of the investigated here numbers.
Rocznik
Strony
99--121
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
autor
  • Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Elaydi S.: An Introduction to Difference Equations. Springer-Verlag, New York 2005.
  • 2. Everest G., van der Poorten A., Shparlinski I., Ward T.: Recurrence Sequences. American Mathematical Society, Rhode Island 2003.
  • 3. Hetmaniok E., Piątek B., Wituła R.: Binomials transformation formulae for scaled Fibonacci numbers. Open Math. 15 (2017), 477–485.
  • 4. Niven I.: Irrational Numbers. MAA 1956 (supplement to Russian edition written by I.M. Yaglom).
  • 5. Prodinger H.: Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions. Open Math. 15 (2017), 1156–1160.
  • 6. Rabinowitz S.: Algorithmic manipulation of third-order linear recurrences. Fib. Quart. 34 (1996), 447–464.
  • 7. Stinchcombe A. M.: Reccurrence relations for powers of recursion sequences. Fib. Quart. 36 (1998), 443–447.
  • 8. Wituła R.: Ramanujan type trigonometric formulae. Demonstratio Math. 45, no. 4 (2012), 779–796.
  • 9. Wituła R.: δ-Fibonacci numbers. Part II. Novi Sad J. Math. 42 (2013), 9–22.
  • 10. Wituła R.: Binomials transformation formulae of scaled Lucas numbers. Demonstratio Math. 46 (2013), 15–27.
  • 11. Wituła R., Hetmaniok E., Słota D., Pleszczyński M.: δ-Fibonacci and δ- Lucas numbers, δ-Fibonacci and δ-Lucas polynomials. Math. Slovaca 67, no. 1 (2017), 51–70.
  • 12. Wituła R., Słota D.: Quasi-Fibonacci numbers of order 11. J. Integer Seq. 10 (2007), article 07.8.5.
  • 13. Wituła R., Słota D.: New Ramanujan-type Formulas and quasi-Fibonacci numbers of order 7. J. Integer Seq. 10 (2007), article 07.5.6.
  • 14. Wituła R., Słota D.: δ-Fibonacci numbers. Appl. Anal. Discrete Math. 3 (2009), 310–329.
  • 15. Wituła R., Słota D., Warzyński A.: Quasi-Fibonacci numbers of the seventh order. J. Integer Seq. 9 (2006), article 06.4.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d8385f0-0c9a-4e54-b218-47a8ecd7c9e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.