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TWO-PARAMETRIC QUASI-FIBONACCI
NUMBERS

Abstract. This paper is devoted to the discussion on the two paramet-
ric quasi-Fibonacci numbers. The fundamental recurrence and reduction
formulae for arguments and indices of these quasi-Fibonacci numbers are
presented here. The matrix representations of the considered numbers are
described and their applications are indicated. Moreover, a number of con-
nections of the two parametric quasi-Fibonacci numbers with the sequences
collected in the OEIS encyclopaedia are noted. Despite quite large volume
of this elaboration, the Authors believe that this is just some kind of an-
nouncement, or an introduction to a definitely larger and detailed discussion
including, above all, the applications of the investigated here numbers.

1. Introduction

Witula and Slota in their papers [15, 12, 14] introduced the original systems
of numbers called the quasi-Fibonacci numbers of n-th order. These numbers
occurred in relation of a natural generalization of the following well known relations

for the Fibonacci numbers

(L4 0"+ 0" = Fupr + Fu(n* +0™)
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or
(140 +9*P)" = Fogr + Fa (" + %),

where F,,, n € Ny denotes the n-th Fibonacci number, k € N\ 5N and € C is
the primitive 5-th root of unity. Let us only notice that the above two relations
are equivalent.

Considering the mentioned above systems of numbers, the most simple one
is created by the d-Fibonacci numbers discussed already in many works (see for
example [3, 14, 9, 10, 11]).

Definition 1. §-Fibonacci numbers a,(9), b, (0) are defined by the following rela-
tions

(14 6(n" +n")" = an(8) + bu(8)(n" +n*"), (1)

where k € N\ 5N, n € Ny, § € C, n € C the primitive 5-th root of unity and
ao(é) = 1, bo(é) =0.

One of the most important properties of the §-Fibonacci numbers is the fact
that they represent the binomial transformation of the scaled Fibonacci numbers

an(8) = f: (Z) Fioy(—6)F = zn: <Z> Fiosr (1 — 8)" sk,

k=0 k=0
ba(6) = kf:_l (Z) (—1)F1F0k = g:l <Z> Fi(1 — §)" gk,

for n € Ny, which can be derived from Definition 1 as well as from the following
recurrence relation for é-Fibonacci numbers resulting easily from (1):

ant1(6) | |1 ) an(0)
l bn;(é) 1 - l 5 1—5] l b (6) 1 n € No.

The following specific values of §-Fibonacci numbers can be determined

an(1) = Foy1, bn(1) = Fy,
an(_l) = Fop_1, bn(_l) = —Iyy,,
an(2) =572, bn(2) = (1 — (=1)")5L"/2,

Aonio(—i) = (2i — 1)" "1 F,, bon(—1) = (2i — 1)"F,,
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(=) = (2 = 1) (B + iFur1)s bansr(—i) = —(2i = 1) (Fo + iFoy),

144y 1. 1., 1+ 1.
a2n< 5 ):3(1+§Z) Ln+27 an( ) ):(1+§Z) Fna
144 1. 1 1+
a2n+1( 5 )=(1+§Z)n (gLn+2+TFn>a

1+ 1 1. .
bant1 ( > ) = 1—0(1 + El)n(3Ln+1 +iL,—2),
where L,, denotes the n-th Lucas number (Lo =2, L1 =1, L,, = L,,—1 + L,_2).
Sequences {a,(0)} and {b,(d)} for the specific values of § € R can be found in
Sloane’s On-Line Encyclopedia of Integer Sequences OEIS. For example, we have

an(—3) = A188168(n + 1),

an(—2) = A015448(n), b (—2) = A014445(n),
an(—1) = A001519(n), bn(—1) = —A001906(n),
an(1) = A000045(n + 1), by (1) = A000045(n),
an(2) = A074872(n), ban(2) = A020699(n),
3"ay () = A081567(n), 3", (%) = A030191(n),
4"a, (§) = A081568(n), 4", () = A099453(n),
5"an, (1) = A081569(n), 5"y, (£) = A081574(n),
5"ay, (2) = A163073(n + 1),

a, (%) = A081571(n),

a, (%) = A163306(n),

where n € Ny. Of course, many other sequences of this type cannot be found in
the OEIS, among others, the sequences of form: {a,(—4)}, {bn(—4)}, {bn(—3)},
{an(3)}, {bn(3)}, {an(4)}, {bn(4)} {an(5)}, {b.(5)} are not included there.

William Webb during the 13th International Conference on Fibonacci Numbers
and Their Applications in Patras (July 2008) formulated the problem of finding
the closed form of the following sums

N
D> Fir,
k=1

where r is a positive integer. The problem is possible to solve by using the -
Fibonacci numbers which is shown in paper [14, Remark 6.5]. H. Prodinger in
paper [5] considered the identities associated with the generating functions of the

d-Fibonacci numbers. However, the main goal of this paper is the discussion on
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the basic algebraic properties of two successive multi-parametric quasi-Fibonacci
numbers (the multi-parametric quasi-Fibonacci numbers were defined for the first
time in paper [12]).

2. Two-parametric quasi-Fibonacci numbers

It appears that it is proper to consider the quasi-Fibonacci numbers of any
odd order n depending on 1¢(n) — 1 parameters [12]. Obviously the symbol ¢(-)
denotes here the Euler function. Aim of this paper is to present exactly this multi-
parameter generalization for two most simple cases of few parameters, that is the
quasi-Fibonacci numbers of seventh and ninth order depending on two parameters.
Let us notice that in papers [15, 12, 14, 13] only the one-parametric quasi-Fibonacci
numbers are discussed, whereas the numbers of ninth order have not been yet
investigated in any literature (however we suggest to see the paper [8]).

However, before presenting the appropriate definitions we discuss few impor-
tant and well known facts which will be used further on in this paper.

Lemma 2. If £ € C is the primitive 7-th root of unity, then every three numbers
belonging to the set {1,& + €662 +¢€5,€3 + ¢4} are linearly independent over Q.

The uncomplicated proof of this fact will be omitted here, but it can be found,
for example, in paper [15] available online (see also [4]).

Remark 3. Analogical lemma can be proven for the set {1,¢ + ¢%,¢%+ (7, ¢ +
¢% ¢* + (5}, where ¢ € C the primitive 9-th root of unity.

Lemma 4. Sum of all n-th complex roots of unity is equal to zero for eachn € N,
that is
1+E+&8 4+ =0,

where £ is the primitive n-th root of unity.

Theorem 5. Let ai € R be linearly independent over Q and let fi,gr € Q[J],
k=1,2,...,n. If for each 6 € Q the equality

D fr(Bar = gr(8)ax
k=1 k=1

holds true, then fi,(8) = gx(0) for each § € C and for each k =1,2,...,n.
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Now we proceed to discussing the main subject of this paper, that is the def-
inition and basic algebraic properties of two-parametric quasi-Fibonacci numbers
of seventh and ninth order.

Definition 6. Two-parametric quasi-Fibonacci numbers of seventh order are de-
fined by means of the following relations

(1+6(&" + &%) + MEF + 2™
= An7(8,\) + Bz (3, \) (" + €5F) + Cr (6, M) (2% + €°%),  (2)

for k € N\ TN, n € Ny, and §, \ € C, where £ € C is the primitive 7-th root of
um'ty and A0’7((5, )\) = ]., Bo}7((5, )\) = 0, 00’7((5, )\) =0

Definition 7. Two parametric quasi-Fibonacci numbers of ninth order are defined
by means of the following relations

(L+6(¢F + %) + A(F + ™)
= Ap9(8,A) + Bno(8, \)(CF + ¢®F) + Cro (8, (" + (™), (3)

for k € N\ 9N, n € Ny, 0, A € C, where ¢ € C is the primitive 9-th root of unity
and Ao,g(é, /\) = 1, Bo,g(é, /\) = O7 0079(5, )\) =0

The special case of two-parametric quasi-Fibonacci numbers of order k, when
A = 0, are the one-parametric quasi-Fibonacci numbers of order k:

where k € {7,9} and n € Ng. Some of the sequences connected to the one-
parametric quasi-Fibonacci numbers of seventh order for the specific values of §
are included in OEIS, for example one can find there the sequences

A, 7(2) = A121442(n),
B, 7(2) = A271944(n),
Cp.7(2) = A271945(n),
A, 7(1) = ATT998(n),
By, 7(1) = A006054(n + 1)
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Ap (1) + Cprr(1) = (—1)"T1A215112(n 4 2),
A

7 7
n,7(1) = By 7(1) = A106803(n),

s

where n € Nj.
Analogically like for the J-Fibonacci numbers, the recurrence relations hold
also for the defined above two-parametric quasi-Fibonacci numbers.

Theorem 8. a) For two-parametric quasi-Fibonacci numbers of seventh order the
following relations are satisfied

Api17(5,0) 1 26—\ A-4 Ap (8,0
BN | =6 1 —A Bn2(5,\) (4)
Cri17(5,N) A S=X 1-6-X || Cur(6,N)

for each n € Ny.
b) For two-parametric quasi-Fibonacci numbers of ninth order the following rela-
tions are satisfied

Ani1.0(6,0) 1 26—X 20 =6 ] [ Ano(6, A
Bny19(0,A) | =] 6 14X -2 Bno(d,\) (5)
Crir0(5,N) A5 1-2A Cro(5,))

for each n € Ny.

Proof. We show the proof only for case a). In case b) the proof runs analogically.
For §,\ € C and N € N we have

(140(8" + %) + A€ + 7))
= (14 6(6" + %) + A€ +6))" (1+8(6" + %) + A€ + 7))
= [ANn7(6,A) + BN ,7(6, A)(€F + %) + Cn 7(6, M) (2" + &%)
X (14 6(6"+ &%) + A& +£°8))
=AN7(0,N) + (26 = A)Bn,7(0,A) + (A = 6)Cn,7(6, )
+ (EF + VB AN7(5,)) + Bn.7(5,A) — ACx.7(6, \)]
+ (&% + E)NAN(6,A) + (6 = N)Bn (5, A) + (1 = 6 = A)Cn (6, V)]
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Next, directly from the definition we get

(14 0(&" + &%) + MF 4 £F)N !
= An41,7(6, A) + Bn41,7(8, \)(€F + €%%) + Cny1,7(8, M) (€2F + €°F),

for some An11,7(6, ), Bn41,7(6, ), Cn+1,7(0, A) € Z[0, A]. Then the linear inde-
pendence of numbers 1,&F + 5% and ¢2% 4 ¢5% over Q implies the identity (4) for
n=N. 0

Corollary 9. Linear systems (4) and (5) presented in Theorem 8 can be solved
with respect to {An7(6,\)}, {Bn,7(0,\)}, ete. In result, the elements of each se-
quence, from among these six sequences, are related by means of the recurrence
relations of order three. What is more, we obtain from relation (4) that all three
sequences {An 7(6,\)}, {Bn,7(0,\)}, {Cn,7(6,\)} satisfy the same recurrence rela-
tion of order three

Xpt3.7(0,A) = (3 =8 — NXpy27(5,\)
+ (=3 426 +20% 4+ 2\ — 30X + 202X, 1.7(0, )
(1 =6 =202+ 6% = X4+ 35\ + 302X — 207 — 45X\ + A3 X, 7(6,\)  (6)

with different initial conditions

A0’7((5, )\) =1, A1’7((5, )\) =1, A2’7((5, )\) =1+ 202 — 26\ + )\2,
Bo,7(0,A) =0, Bi7(d,\) =06, Baz(5,\) =20— A2,
Cor(6,0) =0, Cra(6,A) =X, Cor(d,A) =062 +2) — 20\ — A%,

Discussion on sequences {Apn 9(0,\)}, {Bn,o(6, \)} and {Ch9(5,\)} will be omitted
here.

Proof. Let M* = [m;;(k)]sxs for each k € N. Then by the Cayley-Hamilton the-
orem for each pair 7, j the sequence m;;(k), k € N is a linear recurrence sequence
with characteristic polynomial the same as the characteristic polynomial of M
(see [2, 1.1.12] or [1]). Therefore by (7), recurrence relation (6) can be obtained
computing the characteristic polynomial of the matrix used in (4). O
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2.1. The Jordan decomposition

Let us observe that form of the transition matrix in the recurrence relation (4)

implies that

1 26—\ A=6 1 An7(6, )
51 —A 0| =1 Bur(6N) |,
A SN 1-6-) 0 Cr,7(8, )
[1 25-x A=6 1"[ AN ] [ Awsrr(6,0)
s 1 Y Bi7(6,A) | = | Bupas(6.N) |,
A - 1-d-A ] | Ciad N Cri1.7(5,2)
and ~ I _ ~ _
1 26—-X A—6 Ay 7(8, ) Ant27(8,\)
1) 1 A B277(5, /\) = Bn+277(5, )\)
LA SN 1-0-X] [ Car(8N) | | Casar(6,X) |
Hence we get the following formula
1 26-x A-0 ]|"
WwrEs N =16 1 )\
A 0= 1-0-=-2X
A, 2B, -C, C, — B, (7)
= | B, A, —Ch )

where, in order to simplify the notation, we take
A, =A4,7(0,)), Bn=DB,7(2), C,=Cn7(5)N), neN.

It can be verified that the matrix W(d, A) possesses the following Jordan decom-
position
Ay 000
WEN)=P| 0 Ay 0 |P
0 0 As
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where

Ar=1+0(E+E°% +NE +&),

Ap =140(8+ )+ ME +¢&Y),

A =1+0(&+&)+ M+,
and P is respective similarity matrix which, because of its complicated algebraic
description, is omitted here. Thus, and this is very important for the potential
applications, the matrix W(J, \) is a diagonalizable matrix!

3. Properties and applications of the
two-parametric quasi-Fibonacci numbers

In this section we investigate the selected properties and applications of the
two-parametric quasi-Fibonacci numbers defined by us. We begin with the num-
bers of seventh order.

From the definition of the two-parametric quasi-Fibonacci numbers of seventh
order we obtain

(1+ 66" + &%) + A& + )™
= (1= A+ (6= N)(E" + %) = A€ + £7F)

A1 " d—X A
o—XA A

k k =X A k k
+Bp7 (m7m) (& + &%)+ Cnyr (m,m> &+ )}

. F—A A F—A A
== {Am? <m m) = Cnr <m m)
S-A A A A R
+<Bny7 (m’m>—cm7 (mvm»@ +&7)
d—A A 3k 4k
Cor (T3 5g ) €+ €] ®
Hence we conclude as follows.

Corollary 10. The given below identities hold true

An7(6,0) = (1= 0" [An7 (52, 321) - Cor (5220 329) ] -
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Bur(6,0) = (1— )" [Bm % 321) — Cnr (‘ii—i A—il)] :
C7(6,0) = —(1 = A)"Chz (322, 225

Remark 11. From the above formulae we get, among others, the relations

Cn 7( ) = (_1)n+1cn,7(2_57 2);

)

Cor(8,1 %) = =(F)"Coz ((£0) (5 = 1 5 0), F1 +14).

Remark 12. We have one more beautiful identity

3
H 1+5 €k+§6k)+)\(§2k+§5k))
k=1

= A5 7(6, ) + By, 7(8,A) + C; (8, X) = A2 7(8, ) (Bn,7(8,A) + C,7(5, 1))
— 24, 7(6, ) (Bn,7(8, A)> 4+ C2 2(6, X)) + 3B 7(6, \)Cr 7(5,A)
— 4By, 7(8,\)C2 7(5, X)) + 3A0n,7(8,\) Bn,7(8,\) Crn 7(5, A)
= (1= —A+36)—26% — 202 — 4602 + 362X + 8° + X%)". (9)

Proof. The proof results directly from Definition 6 and Lemma 4. g

Remark 13. Lemma 3.21 in paper [15] is the particular case of Theorem 12 for
A=0.

By using the two-parametric quasi-Fibonacci numbers of seventh order we can
generate the trigonometric idenities for angles 27”, 47” i8 =+, which is presented in
the theorems given below.

But first let us take assistantly
.Anj(é, )\) = 3An,7(5, /\) — Bn,7(5, /\) — Cn,7(5, /\)7 n € Np. (10)

Theorem 14. We obtain the following decomposition

(X — (2sin(2) ") (X — (2sin(=1)) ")(X — (2sin(S) ")
S G LILRNCRY: SUER LIRS SR LI

where z,—1 = (2sin(3F))" + (2sin(4Z))™ + (2sin(3X))".
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Proof. We use the notation s; = sin(T”) k =1,2,3. Then we have

(X = (281) ") (X = (252) " )(X = (253)7")
= X3 — ((251) 7" + (282) 7" + (283) )X
+ 4_n((8182)_n + (5183)_n + (5253)_n)X — 8(818253)_n (12)

for each n € N. The identity s1s283 = —g is well known. So we have

n(251)" + (252)" 4 (2s3)"
(s15283)"

(e

47" ((s182) 7" + (s183) " + (s283) ") =8~

for each n € N. Furthermore we get

(21) 7" + (252) 7" + (253) " = (=i(€ — €9) 7" + (i€ — €))7
+(—i(€" = €))7 = (8s1s283) " [(€° — )" = €N)]"
x [ -9 =] [(° — (e - &))"
=V [(1+ 2 + )+ +et)
+ (142 + )+ +6) + (1428 + €Y +E+¢) ]

:<_ﬁ

) (30r20) B2 ) 6+ 6+ Cure ) 6 )
k=1 k=1

= (-?)n(wn,?(m)—Bn,7(2,1) Cnr(2,1)) ( ) An7(2,1),

which proves the equality of polynomials (11) and (12) and finishes the proof of

theorem.
O

Remark 15. Moreover, the more general formula holds true

ﬁ ( (1 F8(ER 4 €5F) 4 A(e2 +§5k))")

k=1
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=X — A7 (X2 4+ (1 =8 = A= A2+ X)) " A, 7(8", V)X
— (BN =200+ N2 = (6 +N) +1+TN1-N)", (13)

where
02— A2 4+0N=6 02 — A — A

— "
I D P P )\'_1—(5—>\+6)\—>\2'

5

Analyzing the presented formula one can be surprised with no symmetry of
polynomials occurring in the coefficient by the power of X as well as in the constant
term. But when we present them explicitly, it appears that the powers in these
polynomials are symmetric. The explicit forms of coefficient by the power of X for

few initial values of n are presented below
(1—=0—=XA= A2+ XA 7(0, N) =3 =25 — 26% — 2X + 36\ — 2\%,

(1—=30—=XA= A2+ X0)2A27(8", N) =3 — 45 + 262 — 25° + 66* — 4\
+ 40N — 2082\ — 453N 42X + 22602 4+ 156222 — 203 — 18673 + 622,

(1—=6—=XA=A2+ N> A37(8", N) =3 — 60 +126% — 176 + 276 — 126°
— 1165 — 6X 4 36X — 7252\ + 4563\ + 304\ + 3965\ 4 12)2 4 750\
+ 360202 — 785302 — 396422 — 173 — 1026)\3 4 69523
+1863X3 4+ 27A% 4+ 30A* — 39620% — 120° + 39675 — 11\,

as well as the constant terms of polynomials p1 (9, ), p2(d, A) and ps(d, A), respec-
tively
—((B+X)? =200+ A= 0+ N +1+T7A(1—N))
= 1404252 =5+ X — 30X — 302\ 4+ 202 + 46)% — )3,

—((+N? =26+ 1) = (5+A) + 1+ 7671 = \))
= 14204362 — 663 — 26% 4+ 46° — 65 4+ 2\ — 86\ — 462\ + 20863\
+ 664N — 665X 4+ 322 + 10602 — 195222 — 306322 — 5422 — 63
+ 6603 4+ 400223 + 228303 — 20F — 2260% — 22620\ 4 4\5 4+ 86A\5 — XS,

Furthermore, we observe that the following relation in all obtained above polyno-

mials
coeff(0"\") = coeff(6"\F)(mod 7)

holds true!
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Remark 16. The following equalities are fulfilled
3 2
(An7(5,0)" = (Z(l +0(E8 + &%) + A€ + 55'“))”) (14)
k=1
= Ao 7(6,N) +2(1 =0 — A= A2+ 26" A, (8, \), (15)
3 3
(An7(5,0)° = (Z(l +3(EF + )+ A(E + 5“))") (16)
k=1
= Aoy 7(0, \) Ay 7(0, X)) — 2A3,,.7(3, N) (17)
+6(1— 08— X+ 30X —20% — 207 — 4002 + 367\ + 5 + \%)", (18)

from which we obtain the special cases

.Aij( 0) — .Agn 7(0, 0) = 2 1-—

n-An7<
6

) ,

.Azj(é, O) — .Agnj(é, O)An 7(5 ) + 2A3, 7( ) — 2482 + 53)
AS 2(0,1) = Az 7(8, 1) An7(6,1) + 2A35,7(6,1) = 6( 1—26+ 0% +35%)".

With reference to equality (14) we receive additionally

(14 6(€" + €6F) 4 N2 + &))"
=(L+ 022+ €%+ 65+ X224+ 6 + ) + 20(¢" + %)
+2A(E% + ™) + 200 + €1 + €5 4 €5
(14262 — A2 — 26X + (62 — A2 + 2\ — 20\) (€2 + £7F)
+ (20 = X)(€" +¢))",

hence, by relation (8), we get

A2n77(5, /\) = (1 +26% -\ — 25/\)”14"77(51, )\1)7
Bon7(8,0) = (1 +26% — X2 — 200)" By, 7(61, \1),
Con7(6,A) = (14262 — A2 — 260)"C,, 7(61, A1),

where
82 — A2 4+ 2\ — 26\ 26 — \?

5 = — .
D202 2062 — 2007 T 14202 — \62 — 26\
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It should be noted that for the sequence {A, 7(d,\)} in particular cases we

have (see formula (10)):

—1,—1) = A198636(n),

—1,1) = A215076(n),

—2,1) = A274663(n)

2,1) = A275831(n),

1,1) = A09675(n) = (—1)" A094648(n),

)

where n € Nj.

Now we present the selected properties and applications of the two-parametric
quasi-Fibonacci numbers of ninth order.

Let ¢ == ¢* + ( = 2cos Qk”. From the definition of the ninth order quasi-

Fibonacci numbers, in view of equality
5+2
ZCQk =c1+ca+cy =0
k=s
for each s € Ny, the following Binet formula for numbers A,, 9(d, A) results easily
2
n 9 5 )\ Z 14+ dcor + )\02k+1)n. (19)

k=0

Corollary 17. For specific values of A and § we have the formulae

3 k 2n
1 1 2%
A — | = 2 —
3k=1 k 2n
11 (20
3An9(2 5) Z(Qsm (—9 >) ,

k
2 8\ "
3A,9(— 02,02)—1—|—< ) 2cos§—1)cos—ﬂ> .

3|
/—\

9
In similar way, by using additionally the relation cz.ox = —1, we obtain the
formulae
2
QBn,g(é, A) = 2(621« — Cort2) (1 + degr + Acgr+1)”, (20)
k=0

2
9Ch0(0,A) = (carrs — caesa)(1 + Gege + Acgrrn)" (21)
k=0
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Remark 18. Formulae (19), (20), (21) imply the following Binet formulae for
one-parametric quasi-Fibonacci numbers

2

BAn0(6) =D (14 dex)", (22)
k=0
2
9B 0(6) = > (cor — corra)(1 + bean)™, (23)
k=0
9C0(0) =D (caesr — consa) (1 + egn)™. (24)

k=0

Additionally we define one more sequence
2

.An o(, /\ Z Cort2 (1 4+ degr + /\Cgk+1) , n €N,
k=0

for which we receive from relations (20) and (21):
Ano(6,X) = =3(Bn9(0,A) + Crn0(5, N)).

Directly from definition (6), as well as from relation (5), we get also the following

reduction identities for the sums of arguments

n

2" Ay (%(5 +5), %(A + X)) -y <”) (Ao (6, 2) An—m 0 (3, 3)

m
m=0
+2B.9(3, \) Br—m.0(8, ) 4+ 2C,. (5, ) Crrm 9(8, )+
- Bm,9(5; /\)Cn—m,9(5a :\) _Bn—m 9(5 ) m, 9(5 )\)) (25)

n

2"B, (%(5 +9), %(A + X)) => (:1) (Am.o(8, \)Bn_mo(5,))

m=0
+ An—m,9(57 5\)Bm,g 5; /\) + Bm,,9(5; /\)Cn—m,9(57 5‘)"'
+ Biem9(8,A)Crn9(0,A) =Ci (6, \)Crm,0(3, X)) 3 (26)

- mxa»a%ma&my (27)
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Similarly like the two-parametric quasi-Fibonacci numbers of seventh order,
also the two-parametric quasi-Fibonacci numbers of ninth order can be applied to
generating the trigonometric identities.

Theorem 19. The following decompositions hold

a) ﬁ (X — (14 dcgr + )\02k+1)n)

5323 — 34,000, X2+ (1 =862 = X2+ 00" An0(8', )X — A"
b) f[ (X = e (14 ez + Acgenn)")

w =X — (A,0(6,\) + 9B, 0(6, 1)) X?

+(1= 8% = N 4 30" (Ano(5', )
—3An,9(5l, )\/) + 9Bn,9(6’, )\/)X + A",

where

5,::(5—>\)(6+1)—5>\ Vo §+ A2 — 25\

1—02-X2+6) 102 = A2 40N
Ai=1-3(6%+ M) =% — A 4+ 30\ — 3602 + 652\

Proof. The proof runs in analogical way like the proof of Theorem 11 about

decomposition of the two-parametric quasi-Fibonacci numbers of seventh order.[]

Remark 20. We have also

2 2
3‘431,9(57 A) = <Z cort2 (1 + degr + )\CQk-H)n)

k=0
= A 0(6,N) +2(1 =02 = A2+ 0N A,0(8, N), (28)

which implies that

2 _ _ 52\n _ _L l
3A2 5(6,1) = Apo(6,1) +2(5 — 62) An,g( -3

In the next part of this section we present few decompositions connected to
the one-parametric quasi-Fibonacci numbers of ninth order.
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Let sp := —i(¢F — Ek) = 2gin 22 2’” and o, := Ei:o ((—1)k52k)n, n € N. We
formulate the theorem.

Theorem 21. The following decompositions hold
a) )
TT (X = ch) = X3 — 5,2 4+ 3(=1)" Apo(—1)X + (=1)" ", (29)
k=0
b)

2

H (X = can(cart1)")

k=0
=€ —a, X2 +3(-1)""HAno(—1) — Ap_19(=1)X + (=1)", (30)

ap =0, a1 = =3, apy1 = ap — Sp, n EN,

TT (X~ (~1)Fs)") = X7 — 0, X2 4 8(~1)" Ay o (1X — (—V3)".

k=0

Proof. The proofs run analogically like the proofs of presented before theorems
about the decompositions, with the use of the following formulae in respective

cases:
a) 2

H Cok = —
k=0

and the easy to check formula

Z (CQkCQl)n =

0<k<i<2

(=1 + ) B 3(-1)" 4, (—1);

e

i
o

b)
—1 + CQk+2 —1 + CQk)n

MM

E Cok Col (62k+1 CQl+1

0<k<l<2 k:o

2
:Z 1+62k+2)( 1+C2k)( 1+62k - :—ZCQk 1+62k
=0

(22) 3(=1)""HApo(—1) — A,_19(—1)).
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Some of the sequences described by means of the two-parametric quasi-Fibo-
nacci numbers of seventh or ninth order can be found in the OFIS:

Anr(1,1) = A028495(n), Ano(1,1) = A147704(n),
Cy,7(1,1) = A096976(n + 1), Bno(1,1) = A123941(n),
Cpn7(—=1,1) = A181879(n), Bp.o(—1,0) = A122100(n + 2),
Apz(—=1,-1) = A080937(n), 2"Apo(—3,0) = A124292(n + 1),
2"By, (1, 3) = A120757(n), 2" A 0(3,0) = A094831(n + 1),

Ap7(=1,-1) = Cp7(—1,—1) = A052975(n).

Especially interesting is the sequence {A,, 7(1,1)} representing the number of ways
that white can force checkmate in exactly (n + 1) moves, for n > 0, ignoring the
fifty-move and the triple repetition rules, in the following chess position:

a b ¢ d e

Another interesting sequences are:

— {Cy,7(1,1)} counting the closed walks of length n at the start of graph Ps
to which a loop has been added at the other extremity.

— Cp,7(1,1) counts the walks between the first node and the last one.

— {2"4,,9(—1,0)} describing the number of free generators of degree n of the
symmetric polynomials in four noncommuting variables.
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4. Reduction formulae

In this section we present the selected reduction formulae for the indices and
the values of parameters A\ and ¢ supplementing the set of such formulae given
before.

By using the properties of multiplication of powers, we get easily the reduction
formulae for indices of the quasi-Fibonacci numbers of seventh and ninth order.
They are collected in the theorem presented below.

Theorem 22. The following equalities are satisfied:
a) for the two-parametric quasi-Fibonacci numbers of seventh order

Am—i—n,?(& /\) = Am,7(5; /\)An,7(57 )\) + Bm,7(57 )\)Bn,7(57 )\)
- Bm,7(57 )\)Cn,7(5; /\) + Cm,?(éa /\)(Cn,7(57 )‘) - Bn,7(5a /\))7 (31)

Bm+n,7(6; )\) = An,7(57 A)Bmﬁ(év >\) + Am,7(6a )‘)Bn,7(6a )‘)
- m,7(6; )\)Cn,7(57 >‘)’ (32)

Crntn,7(0,A) = Ay 7(8, \)Clrp 7(0, )
+ Bn,7(57 )\) (Bm,7(6; )\) - C’m,?((sa A))
+ Cn77(57 )‘) (Am,7(57 )‘) - Bm,7(6a )‘) - Cm,7(6a )‘))7 (33)

b) for the two-parametric quasi-Fibonacci numbers of ninth order

Aern,Q((s; )\) = Am,Q((s; )\)An,Q(év )\) + 2Bm,9(6; )\)Bn 9(57 >‘)

s

+ 2Cm,9(57 )\)Cn,Q((s; )\) - Bm,9(6; )\)Cn,Q((s; )\) - Bn 9(& A)Cm,Q((Sv >‘)’ (34)

s

Bm,+n,9(5; /\) = Am,,9(5; /\)Bn,9(57 )\) + Bm,9(5; /\)An,9(5; /\)
+ Bm,Q((Sa )\)Cn,Q((s; )\) + Cm,Q((s; )\)Bn,Q((s; )\) - Cm,9(6ﬂ )‘)Cn,Q((Sv >‘)’ (35)

Cm+n,9(5v )‘) = Am79(57 )‘)Cn79(57 )‘) + Bm79(57 )‘)Bn79(57 )‘)
+ A5 9(0,A)Cn 9 (8, A) — Crr9(0, \)Ch9(6, A).  (36)
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Remark 23. We have
a) for the two-parametric quasi-Fibonacci numbers of seventh order

A2n,7(57 >‘) = Ai,?((sa )‘) + Br2z,7(6a )‘) + CZ,?(& )‘) - 2Bn,7(57 )‘)Cnﬁ((sa A)v
B2n77(57 )‘) = 2An,7(57 )\)an((s, )‘) - 0721,7(& )‘)7
Con,7(8,N) =24, 7(6, \)Cr 7(8, ) — 2By, 7(8, \)Cl, 7 (0, A) + 3317(5, A)— C,QZJ((S, A),

b) for the two-parametric quasi-Fibonacci numbers of ninth order

Az o(6,X) = A2 (6, X) 4+ 2B (6, A) + 2C2 (8, A) — 2By,9(6, \)Cho(3, \),
Bono(6,\) = 24,,0(8,\)Bpn.o(6,\) + 2B;,.0(0, \)Cro(6, \) — 0379(5, A),
Con, 9(57 )‘) = 2An,9(57 )‘)Cn79(6a )‘) + 33,9(& )‘) - 0721,9(6a )‘)

While considering the reduction formulae for parameters, in case of the quasi-
Fibonacci numbers of seventh order we distinguish two types of them, in two

separated collections.

Theorem 24. The following reduction formulae hold true. The first collection
will be called the general reduction formulae:

(1+a(26 — X) +b(A = 8)" An7(6”, N') = Ap7(a,b)An (8, )
+ By, 7(a,0)(2B7(8, A) — Cp7(8, N) + Cn.7(a, b)Cr (8, )
= Cn1(a,0)Bn,7(5,A)); - (37)

(1+a(26 — A) +b(A = 8)"Bn7(8”,\") = An7(a,b)Bn(8,))
+ An7(6,\)Bn.7(a,b) = Cn.7(a,b)Cr7(3,A);  (38)

(14 a(26 — A) +b(A — 8))"Cr7(8", N") = Ap 7(8, \)Cr.7(a, b)
+ Bn,7(67 )\)(Bn,7(a; b) - Cn,?(aa )
+ an((s, )‘)(Anﬁ(av b) - B, 7((1, b) - Cn,7(a7 b))’ (39)

)

where

5 §+a—bx g o A= X) (16— )

T 14 al26— N +b(A—0) 1+ a(20 — A) + b(A—6)
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The second collection will be called the particular reduction formulae:

0+ p O
= A, 7(5)A, B, +(5)B,
e o) = Ann(0) A0 () + Br(0) ()

+ (Bn,7(0) = Cn,7(6))(Bn,7 (1) — Cnz(p)); - (40)

(1 + 25#)”1%,7 (

0+ p o
14+ 20p" 14 20u

> = Ap7(8)Bor(p) + Ap7(1) B 7(0)

+ Cn7(0)Cr7(0);  (41)

(1+ 2644)" Bz <

O+ p o
14 26p)"C,, , = A, n By,7(0) By,
(1+20p)"C 7 <1+25# 1+25M> 7(0)Cn7(p) + B 7(8)Br. 7 (1)

— B, 7(0)Ch 7(0) + Cp 7(6)(An,7 (1) — Bpyr(p) — Crz(p)). (42)

Remark 25. From the presented above formulae we deduce the following specific

relations

(=1)"Ap7(=2i,1) = A7 7(i) + B} 7(i) + (Bp,7(i) — Cn,7(3)),
(=1)"Bn,7(=2i,1) = 24, 7(i) Bp,7 () + Cn 7 (i),

(~1)"Cour(~2i,1) = 24, 7(1)Co 7(0) + (Bo1(0) — Cor(0))”,

2 Ay 1(3,0) = A2 (11) 4 B 7(11) + (Bua(1,1) — (1, 1))

2"By, 7(1,0) = 24, 7(1, 1)Bn,7(1, 1) —C2,(1,1),

27Cy7(3,0) = 24, 7(1,1)Crr(1,1) + (Bpr(1,1) = Cz(1,1)) = C2.4(1,1).

The next formulae for the quasi-Fibonacci numbers of ninth order, obtained

by simple calculations, should be also noted.

Theorem 26. The following reduction formulae are satisfied

Apo(0,A) = Apo(A— 9, —0),

B o(6,A) = —Cpo(A—d,—9),

Ch9(0,A) = Bpg(A—06,—=8) — Cpo(A — 9, —0),
Apo(0,A) = Apo(—A, 6 —N),

Bpo(0,A) = Cro(—=A, 0 = A) — Bro(—A, 0 — A),
Chr9(0,A) = —Bpo(—A,0 — A)
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Remark 27. The above formulae imply the next specific equalities

An,9(5; O) = An,9(07 5) = An,9(_5a _5)5
Bn,9(57 O) - — n,9(_57 _5) - Cn,Q((s; 0) + Cn,Q((Sv O)a
Cn9(6,0) = =B, 9(0,0) = By o(—3d, —0) + By 9(6,0).
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