PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing bubble bize prediction in flotation processes : a drift flux model accounting for frother type

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This communication presents a methodology, based on a modified drift flux model, to determine bubble size distribution in column flotation. The modified drift flux model incorporates a surfactant-type parameter. This parameter considers the impact of surfactant on bubble hydrodynamics. The methodology aims to improve the accuracy of bubble size distribution prediction, which presents deviation depending on surfactant type (i.e. polyglycolic based or alcoholic base). Many authors have proposed different mathematical improvements to reduce de experimental data deviations in the presence of different surfactants. However, from 1988 to 2022, the determination coefficient, or the quality of the adjustments, from the proposed mathematical models is, at the most, 92% (relative error). The proposed methodology improves the quality of the adjustments to 98.6, adding a single parameter for groups of surfactants. This methodology incorporates a single parameter in the terminal velocity calculation that can compensate for the impact of surfactant type in bubble hydrodynamic (bubble skin friction or drag coefficient, bubble wake, bubble shape, bubble rigidity). This parameter is a function of the gas holdup calculated from gas velocity measured and the bubble size distribution calculated (deviated) from gas holdup and gas velocity measured. The methodology is validated with reported experimental results and proposed modifications from various authors. The confidence interval (2 σ) is reduced from 0.11mm to 0.05mm in the case of (Yianatos, Banisi, Ostadrahimi). In the case of the recently reported experimental results from Maldonado and Gomez, the confidence interval is reduced from 0.31 mm to 0.09 mm. These results improve bubble size estimation based on drift flux in column flotation, contributing to a better understanding of surfactant impact on bubble swarm hydrodynamics.
Rocznik
Strony
art. no. 178234
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Oulu Mining School, University of Oulu, 90570, Oulu, Finland
  • Departmento de Ingeniería Química y de Medio Ambiente, Universidad Católica del Norte, 1270709, Antofagasta, Chile
  • Departmento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, 2390123, Valparaíso, Chile
  • Oulu Mining School, University of Oulu, 90570, Oulu, Finland
  • Departmento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, 2390123, Valparaíso, Chile
Bibliografia
  • ARAYA, R., GOMEZ, C., FINCH, J., 2014. Measuring gas dispersion parameters: Selection of sampling points. Minerals Engineering. 65. 172–177.
  • BANISI, S., AND FINCH, J., 1994. Technical note reconciliaton of bubble size estimation methods using drift flux analysis. Mineral Engineering. 7, 1555-1559.
  • DOBBY, G.S., YIANATOS, J.B., FINCH, J.A., 1998. Estimation of bubble diameter flotation columns from drift flux analysis. Can. Metall. Q. 27 (2), 85–90.
  • DOBBY, G., YIANATOS, J., FINCH, J., 1987. Estimation of bubble diameter in flotation columns from drift flux analysis. Canadian Metallurgical Quarterly. 27(2), 85-90.
  • DEGLON, D., EGYA-MENSAH, D., FRANZIDIS. J.P., 2000. Review of hydrodynamics and gas dispersion in flotation cells on South African platinum concentrators. Miner. Eng. 13 (3) 235–244.
  • GRAU, R., HEISKANEN, K., 2005. Bubble size distribution in laboratory scale flotation cells. Miner. Eng. 18 (12), 1164–1172.
  • GOMEZ, C. O., MALDONADO, M., 2022. Modelling Bubble Flow Hydrodynamics: Drift-Flux and Molerus Models. Minerals, 12(12), 1502.
  • GORAIN, B., FRANZIDIS, J., MANLAPIG, E., 1990. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 1: effect on bubble size distribution. Miner. Eng. 8 (6) 615–635.
  • GORAIN, B., FRANZIDIS, J., MANLAPIG, E., 1999. The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data. Minerals Engineering, 12(3), 309-322.
  • HAN, M., PARK, Y., LEE, J., SHIM, J., 2002. Effect of pressure on bubble size in dissolved air flotation. Water Sci. Technol. Water Supply 2 (5–6) 41–46.
  • HASSANZADEH, A., KOUACHI, S., HASANZADEH, M., CELIK, M.S., 2017. A new insight to the role of bubble properties on inertial effect in particle-bubble interaction, J. Dispers. Sci. Technol. 38 (7) 953–960.
  • HERNANDEZ-AGUILAR, J., COLEMAN, R., GOMEZ, C., FINCH, J., 2004. A comparison between capillary and imaging techniques for sizing bubbles in flotation systems, Miner. Eng. 17, 53–61.
  • HOSSEINI, M.R., HAJI AMIN SHIRAZI, H., MASSINAEI, M., MEHRSHAD, N., 2015. Modeling the relationship between froth bubble size and flotation performance using image analysis and neural networks, Chem. Eng. Commun. 202 (7), 911–919.
  • KHOSHDAST, H., ABBAS, S., 2011. Flotation Frothers: Review of their classifications, porperties and preparation. The Open Mineral Processing Journal. 4. 25-44.
  • KRACHT, W., VALLEBUONA, G., CASALI, A., 2005. Rate constant modeling for batch flotation: as a function of gas dispersion properties, Miner. Eng. 18, 1067–1076.
  • LEIVA, C., ACUÑA, C., 2021. Dispositivo sensor y sistema para la medición en línea de la distribución del tamaño de burbujas en celdas de flotación, Chile Granted Patent, CL2018003886.
  • LEIVA, C., ACUÑA, C., BERGH, L., LUUKKANEN, S., DA SILVA, C., 2022. Online Superficial Gas Velocity, Holdup, and Froth Depth Sensor for Flotation Cells. Journal of Sensors.
  • LEIVA, C., ACUÑA, C., 2023. Dispositivo sensor y sistema para la medición en línea de la velocidad de gas superficial, profundidad de espuma, densidad aparente y holdup en celdas de flotación, Chile Granted Patent, CL2018003886
  • LEIVA, J., VINNETT, L., CONTRERAS, F., YIANATOS, J., 2010. Estimation of the actual bubble surface area flux in flotation, Miner. Eng. 23, 888–894.
  • MASLIYAH, J., 1979. Hindered settling a multi-species particle system. En J. Maliyah, Chemical Engineering Science. Pergamon Press.
  • OSTADRAHIMI, M., FARROKHPAY, S., GHARIBI, K., DEHGHANI, A., 2020. A new empirical model to calculate bubble size in froth flotation columns. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 594, 124672.
  • QUINN, J.J., KRACHT, W., GOMEZ, C.O., GAGNON, C., FINCH, J.A., 2007. Comparing the effects of salts and frother (MIBC) on gas dispersion and froth properties, Miner. Eng. 20, 1296-1302.
  • REIS, A.S., BARROZO, M.A.S., 2016. A study on bubble formation and its relation with the performance, Sep. Purif. Technol. 161 112–120.
  • REIS, A.S., REIS FILHO, A.M., DEMUNER, L.R., BARROZO, M.A.S., 2019. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore, Powder Technol. 356 (2019) 884–891.
  • RICHARDSON, J. F., ZAKI, W. N., 1954. The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3(2), 65-73.
  • SHABALALA, N., HARRIS, M., LEAL FILHO, L., DEGLON, D., 2011. Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell, Miner. Eng. 24, 1448–1453.
  • SCHILLER, L., NAUMANN, A., 1933. Drag coefficient for spherical shape. VDI Zeits, 13, 318.
  • SOVECHLES, J.M., WATERS, K.E., 2015. Effect of ionic strength on bubble coalescence in inorganic salt and seawater solutions, AIChE J. 61, 8.
  • TUCKER, J., DEGLON, D., FRANZIDIS, J., HARRIS, M., O’CONNOR, C., 1994. An evaluation of a direct method of bubble size distribution measurement in a laboratory batch flotation cell, Miner. Eng. 7 (5,6) 667–680.
  • VERRELLI, D., KOH, P., NGUYEN, A.V., 2011. Particle-bubble interaction and attachment in flotation, Chem. Eng. Sci. 66, 5910–5921.
  • VINNETT, L., CONTRERAS, F., YIANATOS, J., 2012. Gas dispersion pattern in mechanical flotation cells, Miner. Eng. 26 (2012) 80–85.
  • VINNETT, L., YIANATOS, J., ALVAREZ, M., 2014. Gas dispersion measurements in mechanical flotation cells, Industrial experience in Chilean concentrators, Miner. Eng. 57, 12–15.
  • WALLIS, G., 1969. One dimensional two-phase flow. New York: McGraw-Hill.
  • WEI, Z., FINCH, J.A., 2014. Effect of solids on pulp and froth properties in flotation, J. Cent. South Univ. 21, 1461–1469.
  • WILLS, B.A., NAPIER-MUNN T.J., 2006. Mineral Processing Technology (Seven edition ed.). Elsevier Science and Technology Books.
  • WILLS, B.A., FINCH, J.A., 2016. Mineral Processing Technology (Eighth Edition ed.). Elsevier Ltd.
  • YIANATOS, J., 2005. Flotación de Minerales. Universidad Técnica Federico Santa María, Departamento de Procesos Químicos, Biotecnológicos y Ambientales.
  • YIANATOS, J., 2007. Fluid Flow and Kinetic Modelling in Flotation Related Processes: Columns and Mechanically Agitated Cells—A Review. Chemical Engineering Research and Design. 85. 1591–1603
  • YIANATOS, J.B., FINCH, J.A., DOBBY, G.S., XU, M., 1988. Bubble size estimation in a bubble swarm. Journal of Colloid and Interface Science. 126(1), 37-44.
  • ZHANG, W., 2014. Evaluation of effect of viscosity changes on bubble size in a mechanical flotation cell, Trans. Nonferrous Met. Soc. China 24 (9) 2964–2968.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d816735-5163-4dd8-a67e-d9cdd5c4dfc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.