PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Surface Layer Enriched with Zinc on AlSi17 Aluminium Cast Alloy by Hot-Dip Galvanizing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the fabrication of the surface layer enriched with Zn on AlSi17 aluminium alloy to modify the microstructure and surface properties of the alloy. The continuous surface layer was fabricated on the AlSi17 substrate by the hot-dip galvanizing of AlSi17 for 15min in a Zn bath heated to 450°C. The thickness of the layer was about 100 μm. The layer was characterised by a multi-component microstructure containing the regions of a solid solution of Al in Zn and dendrites of a eutectoid composed of a solid solution of Al in Zn and a solid solution of Zn in Al. In the layer, fine particles of Si with a regular shape were distributed. The results indicated that these Si particles formed by the action of Zn on the eutectic Si precipitations in the AlSi17 substrate. In the microstructure, large primary Si crystals and multi-phase precipitations, originating from the substrate, were also observed. The surface layer had much higher microhardness than the AlSi17 substrate. The results showed that hot-dip galvanizing can be used to modify the microstructure and properties of the surface layer of AlSi17. The study indicates the possibility of conducting further research on the fabrication of joints between AlSi17 and other metallic materials using a Zn interlayer fabricated by hot-dip galvanizing.
Rocznik
Strony
67--70
Opis fizyczny
Bibliogr. 17 poz., fot., wykr.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 Ave., 25 314 Kielce, Poland
  • University of Zilina, Department of Technological Engineering, Univerzitna 8215/1 St., 010 26 Zilina, Slovakia
Bibliografia
  • [1] Hatch J.E. (1984). ALUMINUM. Properties and Physical Metallurgy. Ohio: American Society for Metals.
  • [2] Pastircak R., Scury J., Bruna M. & Bolibruchová D. (2017). Effect of Technological Parameters on the AlSi12 Alloy Microstructure during Crystallization under Pressure. Archives of Foundry Engineering, 17(2), 75–78. Doi: 10.1515/afe-2017-0054
  • [3] Liu L., Tan J. & Liu X. (2007). Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy. Materials Letters, 61, 2373-2377. Doi:10.1016/j.matlet.2006.09.016
  • [4] Xu R.Z., Ni D.R., Yang Q., Liu C.Z. & Ma Z.Y. (2016). Influence of Zn coating on friction stir spot welded magnesium-aluminium joint. Science and Technology of Welding and Joining, 22(6), 512–519. Doi: 10.1080/13621718.2016.1266735
  • [5] Zhao L.M. & Zhang Z.D. (2008). Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg–Al joints. Scripta Materialia, 58(4), 283–286. Doi: 10.1016/j.scriptamat.2007.10.006
  • [6] Zhang H.T. & Song J.Q. (2011). Microstructural evolution of aluminum/magnesium lap joints welded using MIG process with zinc foil as an interlayer. Materials Letters, 65, 3292–3294. Doi: 10.1016/j.matlet.2011.05.080
  • [7] Zhang H.T., Dai X.Y. & Feng J.C. (2014). Joining of aluminum and magnesium via pre-roll-assisted A-TIG welding with Zn interlayer. Materials Letters, 122, 49–51. Doi: 10.1016/j.matlet.2014.02.008
  • [8] Mola R., Bucki T. & Gwozdzik M. (2018). The Effect of a Zinc Interlayer on the Microstructure and Mechanical Properties of a Magnesium Alloy (AZ31)–Aluminum Alloy (6060) Joint produced by Liquid–Solid Compound Casting. Journal of Minerals, Metals & Materials Society, 71(6), 2078–2086. Doi: 10.1007/ s11837-019-03405-y
  • [9] Balasundaram R., Patel V.K., Bhole S.D. & Chen D.L. (2014). Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints. Materials Science and Engineering: A, 607(3), 277–286. Doi: 10.1016/j.msea.2014.03.135
  • [10] Keller F. & Zelley W.G. (1950). Conditioning Aluminum Alloys for Electroplating. Journal of the Electrochemical Society, 97(4), 143–151. Doi: 10.1149/1.2777981
  • [11] Zelley W.G. (1953). Formation of Immersion Zinc Coatings on Aluminum. Journal of the Electrochemical Society, 100(7), 328–333. Doi: 10.1149/1.2781127
  • [12] Saidman S.B., Munoz A.G. & Bessone J.B. (1999). Electrodeposition of indium and zinc on aluminium. Journal of Applied Electrochemistry, 2, 245–251. Doi: 10.1039/c8gc03389g
  • [13] Wu J., Chen Z., Si Y.S., Guo Z.C. & Sun X.I. (2011). Two-Step Electroless Zinc Plating Process of 1060 Aluminum. Materials Protection, 607(05), 37–39.
  • [14] Murray J.L. & McAIister A.J. (1984). The AI-Si (Aluminum-Silicon) System. Bulletin of Alloy Phase Diagrams, 5, 74–84. Doi: 10.1007/BF02868729
  • [15] Murray J.L. (1983). The Al-Zn (Aluminum-Zinc) System. Bulletin of Alloy Phase Diagrams, 4, 55–73. Doi: 10.1007/BF02880321
  • [16] Olesinski R.W. & Abbaschian G.J. (1985). The Si-Zn (Silicon-Zinc) system. Bulletin of Alloy Phase Diagrams, 6, 545–548. Doi: 10.1007/BF02887156
  • [17] Jacobs M.H.G. & Spencer P.J. (1996). A critical thermodynamic evaluation of the systems Si-Zn and Al-Si-Zn. Calphad, 20(3), 307–320. Doi: 10.1016/S0364-5916(96)00033-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d7a3b0f-c3fa-4a8a-a714-6d9a02342998
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.