PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An elastoplastic constitutive model for assessing ground settlements induced by deep excavations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ground movements induced by deep excavations may cause damages on neighboring existing buildings. Finite element simulations generally give acceptable estimates of the horizontal displacements of the retaining wall, but results are less satisfactory for the vertical displacements of the ground surface behind the structure. A possible explanation is that most constitutive models describe volumetric strains in a simplified way. This paper proposes an elastoplastic constitutive model aimed at improving the prediction of vertical displacements behind retaining walls. The model comprises a single plastic mechanism with isotropic strain hardening, but has a specific flow rule that allows to generate contractive plastic strains. Identification of the parameters based on triaxial tests is explained and illustrated by an example of calibration. A numerical analysis of a well-documented sheet pile wall in sand in Hochstetten (Germany) is presented. The results given by the model are compared with the measurements and with those obtained using the Hardening Soil Model. The potential advantages of the proposed model are then discussed.
Wydawca
Rocznik
Strony
231--245
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Univ Gustave Eiffel, Marne-la-Vallée, France
  • Terrasol Setec, Paris, France
  • Terrasol Setec, Paris, France
  • Univ Gustave Eiffel, Marne-la-Vallée, France
Bibliografia
  • [1] Benz, T. (2007). Small strain stiffness of soils and its numerical consequences, PhD Thesis, Universität Stuttgart.
  • [2] Chehade, W. (1991). Méthodologie pour la validation des modèles des géomatériaux-Application aux modèles élastoplastiques, PhD Thesis, Univ Sciences et Technologies de Lille (in French).
  • [3] Coquillay, S. (2005) Prise en compte de la non linéarité du comportement des sols soumis à de petites déformations pour le calcul des ouvrages géotechniques, PhD Thesis, Ecole Nationale des Ponts et Chaussées (in French).
  • [4] Coquillay, S., Bourgeois, E., and Mestat, Ph. (2005) A non-linear elastic-perfectly plastic model for the simulation of the Hochstetten sheet pile wall. 11th International Conference of IACMAG, Turin, Italy, June 19–24, 2005.
  • [5] Delattre, L. (2004). A century of retaining wall computation methods III: Modeling of retaining walls by means of the finite element method, Bull Lab Ponts et Chaussées, n°252–253, 95–117, www.ifsttar.fr/collections/BLPCpdfs/blpc_252-253_95-117_en.pdf.
  • [6] Duncan, J.M., and Chang, C.-Y. (1970). Nonlinear Analysis of Stress and Strain in Soils. Journal of the Soil Mechanics and Foundations Division 96, 1629–1653.
  • [7] El Arja, H. (2020). Contribution à la modélisation numérique des excavations profondes, PhD Thesis, Université Paris-Est.
  • [8] El Arja, H., Bourgeois, E., and Burlon, S. (2019). Prise en compte du mécanisme des déformations plastiques dans les calculs des excavations profondes. Proc XVII ECSMGE-2019, Reykjavik.
  • [9] Elmi, F., Bourgeois, E., Pouya, A., and Rospars, C. (2006) Elastoplastic Joint Element for the Finite Element Analysis of the Hochstetten Sheet Pile Wall, in Numerical methods in geotechnical engineering NUMGE 2006, Schweiger (ed), Graz, Austria, 411–416
  • [10] Fern, E.J., and Soga, K. (2018). The dilatancy conditions at critical state and its implications on constitutive modelling, Numerical Methods in Geotechnical Engineering NUMGE 2018, Porto, 8 p.
  • [11] Finno, R.J. (2008). General Report: Analysis and Numerical Modeling of Deep Excavations, Proc 6th Int Symp on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China, Ng, Nuang and Liu, eds., Taylor & Francis, 87–97.
  • [12] Finno, R.J., and Harahap, I.S. (1991). Finite Element Analyses of HDR-4 Excavation. Journal of Geotechnical Engineering 117, 1590–1609.
  • [13] Goh, A.T.C., Zhang, F., Zhang, W., Zhang, Y., and Liu, H. (2017a) A simple estimation model for 3D braced excavation wall deflection, Computers and Geotechnics 83, 106–113. http://dx.doi.org/10.1016/j.compgeo.2016.10.022
  • [14] Goh, A.T.C., Zhang, F., Zhang, W., and Chew, O.Y.S. (2017b) Assessment of strut forces for braced excavation in clays from numerical analysis and field measurements, Computers and Geotechnics 86, 141–149. http://dx.doi.org/10.1016/j.compgeo.2017.01.012
  • [15] Goodman, R. E., Taylor, R. L., and Brekke, T. L. (1968). A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division ASCE, Vol.94, No. SM3, 637–659.
  • [16] Itech (2021) General overview - Geotechnical analysis - v2021 (https://www.cesar-lcpc.com/documents/CESAR-FC-2021-EN.pdf)
  • [17] Jardine, R.J., Potts, D.M., Fourie, A.B., and Burland, J.B. (1986). Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction. Géotechnique 36(3), 377–396 (https://doi.org/10.1680/geot.1986.36.3.377).
  • [18] Khoshnoudian, F. (2002). Numerical Analysis of the Seismic Behavior of Tunnels Constructed in Liquefiable Soils, Soils and Foundations, 42(6), 1–8.
  • [19] Khoshravan Azar, A. (1995). Problèmes de sols saturés sous chargement dynamique: modèle cyclique pour les sols et validation sur des essais en centrifugeuse, PhD Thesis, Univ Sciences et Technologies de Lille (in French).
  • [20] Mestat, Ph., and Arafati, N. (1998) Finite element modelling of the performance of the experimental sheet pile at Hochstetten, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 216, 19–39.
  • [21] Moussaoui, M., Rehab Bekkouche, S., Kamouche, H., Benayoun, F., and Goudjil, K. (2022) Identification of Soil Mechanical Parameters by Inverse Analysis Using Stochastic Methods, SSP-Journal of Civil Engineering, 17(1), DOI: 10.2478/sspjce-2022-0018
  • [22] Obrzud, R.F. (2010). On the use of the Hardening Soil Small Strain model in geotechnical practice, Numerics in Geotechnics and Structures, 15–42.
  • [23] Obrzud, R.F., and Truty, A. (2018). The Hardening soil model - A practical guidebook, Z Soil.PC 100701 report.
  • [24] Plaxis (2020). Material Models Manual.
  • [25] Roscoe, K.H., Schofield, A.N., and Wroth, C.P. (1958). On the Yielding of Soils, Géotechnique 8(1), 22–53 (https://doi.org/10.1680/geot.1958.8.1.22).
  • [26] Rowe, P.W. (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Royal Society of London, Mathematical and Physical Sciences, Vol. 269, Series A, 500–557.
  • [27] Schanz, T., and Vermeer, P. (1996) Angles of friction and dilatancy of sand, Géotechnique 46 (1), 145–151.
  • [28] Schanz, T., Vermeer, P.A., and Bonnier, P.G. (1999). The hardening soil model: Formulation and verification, Beyond 2000 in Computational Geotechnics, R.B.J. Brinkgreve, ed., 281–296.
  • [29] Schofield, A., and Worth, P. (1968). Critical State Soil Mechanics, Mc Graw-Hill.
  • [30] Schweiger, H.F. (2002a). Benchmarking in Geotechnics_Part I: Results of benchmarking. Technical report CGG IR006 2002, Institute for Soil Mechanics and Foundation Engineering, Graz University of Technology.
  • [31] Schweiger, H.F. (2002b). Results from numerical benchmark exercises in geotechnics, 5th Conf on Num Meth in Geotechnical Engineering NUMGE 2002, Mestat (ed), Paris, volume 1, 305–314.
  • [32] Shahrour, I., and Ousta, R. (1998). Numerical analysis of the behavior of piles in saturated soils under seismic loading, 11th European Conf. on Earthquake Engineering (Rotterdam).
  • [33] Shahrour, I., Benzenati, I., and Khoshravan Azar, A. (1995a). Validation of a nonlinear coupled dynamic model on centrifuge tests of VELACS project, Numerical Models in Geomechanics NUMOG V, (Rotterdam), pp. 269–274.
  • [34] Shahrour I., Ghorbanbeigi S., and Von Wolffersdorff P.A. (1995b) Comportement des rideaux de palplanche : expérimentation en vraie grandeur et prédictions numériques. Revue Française de Géotechnique, 71, 39–47 (in French).
  • [35] Shao, C., and Desai, C.S. (2000). Implementation of DSC model and application for analysis of field pile tests under cyclic loading, Int J for Numerical and Analytical Methods in Geomechanics, 24(6), 601–624.
  • [36] Simpson, B. (1992). Retaining structures : displacement and design, Géotechnique 42(4), 541–576 (https://doi.org/10.1680/geot.1992.42.4.541).
  • [37] Tatsuoka, F.M., Sakamoto, M., Kawamura, T., and Fakushiima, S. (1986). Strength and deformation characteristics of sand in plane strain compression at extremley low pressures, Soils and Foundations, 26(1), 65–84.
  • [38] Von Wolffersdorff P.-A. (1994a) Spundwand-Feldversuch in Hochstetten / Sheetpile wall field test in Hochstetten. Part A: Presentation of the problem. Part B: Test results and predictions. Workshop Sheet Pile Test Karlsruhe, Delft University, October 6 and 7, 1994
  • [39] Von Wolffersdorff P.-A. (1994b) « Results of field test and evaluation of the predictions and subsequent calculations », Workshop Sheet Pile Test Karlsruhe, Delft University.
  • [40] Zaher, M. (1995). Validation des modèles de sols sur ouvrages types. PhD Thesis, Université des sciences et technologies de Lille.
  • [41] Zdravkovic, L., Potts, D.M., and St John, H.D. (2005). Modelling of 3D excavation in finite element analysis. Géotechnique 55(7), 497–513 (https://doi.org/10.1680/geot.2005.55.7.497).
  • [42] Zhang, W., Goh, A.T.C., and Xuan, F. (2015a) A simple prediction model for wall deflection caused by braced excavation in clays, Computers and Geotechnics 63, 67–72. http://dx.doi.org/10.1016/j.compgeo.2014.09.001
  • [43] Zhang, W., Goh, A.T.C., and Zhang, Y. (2015b) Updating soil parameters using spreadsheet method for predicting wall deflections in braced excavations. Geotechnical and Geological Engineering 33, 1489–1498, DOI 10.1007/s10706-015-9914-4
  • [44] Zhang, W.G., Goh, A.T.C., Chew, O.Y.S., Zhou, D., and Zhang, R. (2018a) Performance of braced excavation in residual soil with groundwater drawdown, Underground Space 3, 150–165. https://doi.org/10.1016/j.undsp.2018.03.002
  • [45] Zhang, W., Wang, W., Zhou, D., Zhang, R., Goh, A.T.C., and Hou, Z. (2018b) Influence of groundwater drawdown on excavation responses - A case history in Bukit Timah granitic residual soils. Journal of Rock Mechanics and Geotechnical Engineering 10, 856–864. (https://doi.org/10.1016/j.undsp.2018.03.002)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d73ce90-92c8-4a58-bc73-8f7c0f08b7d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.