PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The post-warranty random maintenance policies for the product with random working cycles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced sensors and measuring technologies make it possible to monitor the product working cycle. This means the manufacturer’s warranty to ensure reliability performance can be designed by monitoring the product working cycle and the consumer’s post-warranty maintenance to sustain the post-warranty reliability can be modeled by tracking the product working cycle. However, the related works appear seldom in existing literature. In this article, we incorporate random working cycle into warranty and propose a novel warranty ensuring reliability performance of the product with random working cycles. By extending the proposed warranty to the post-warranty maintenance, besides we investigate the postwarranty random maintenance policies sustaining the post-warranty reliability, i.e., replacement last (first) with preventive maintenance (PM). The cost rate is constructed for each post-warranty random maintenance policy. Finally, sensitivity of proposed warranty and investigated polices is analyzed. We discover that replacement last (first) with PM is superior to replacement last (first).
Rocznik
Strony
726--735
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Foshan University, School of Quality Management and Standardization, Foshan 528225, China
autor
  • Northwestern Polytechnical University, School of Mechanical Engineering, Xi’an 710072, China
  • China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi’an 710077, China
autor
  • China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi’an 710077, China
autor
  • China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi’an 710077, China
Bibliografia
  • 1. Barlow RE, Proschan F. Mathematical theory of reliability. John Wiley & Sons, Hoboken 1965, http://10.1214/aoms/1177699826.
  • 2. Cha JH, Finkelstein M, Levitin G. Optimal warranty policy with inspection for heterogeneous, stochastically degrading items. European Journal of Operational Research 2021; 289(3): 1142–1152, https://doi.org/10.1016/j.ejor.2020.07.045.
  • 3. Chang CC. Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair.Computers & Industrial Engineering 2014; 67: 185–194, https://doi.org/10.1016/j.cie.2013.11.011.
  • 4. Chen CK, Lo CC, Weng TC. Optimal production run length and warranty period for an imperfect production system under selling price dependent on warranty period. European Journal of Operational Research 2017; 259(2): 401–412, https://doi.org/10.1016/j.ejor.2016.10.038.
  • 5. Gao H, Cui L, Dong Q. Reliability modeling for a two-phase degradation system with a change point based on a Wiener process. Reliability Engineering & System Safety 2020; 193: 106601, https://doi.org/10.1016/j.ress.2019.106601.
  • 6. Huang T, Zhao Y, Coit DW, Tang L. Reliability assessment and lifetime prediction of degradation processes considering recoverable shock damages. IISE Transactions 2021; 53(5): 614–628, https://doi.org/10.1080/24725854.2020.1793036.
  • 7. Hooti F, Ahmadi J, Longobardi M. Optimal extended warranty length with limited number of repairs in the warranty period. Reliability Engineering & System Safety 2020; 203: 107111, https://doi.org/10.1016/j.ress.2020.107111.
  • 8. Huang HZ, Liu ZJ, Murthy DNP. Optimal reliability, warranty and price for new products. IIE Transactions 2007; 39(8): 819–827, https://doi.org/10.1080/07408170601091907.
  • 9. He Z, Wang D, He S, Zhang Y, Dai A. Two-dimensional extended warranty strategy including maintenance level and purchase time: A winwin perspective. Computers & Industrial Engineering 2020; 141: 106294, https://doi.org/10.1016/j.cie.2020.106294.
  • 10. KnopiK L, MigAwA K. Optimal age-replacement policy for non-repairable technical objects with warranty. Eksploatacja i Niezawodnosc– Maintenance and Reliability 2017; 19(2): 172–178, http://dx.doi.org/10.17531/ein.2017.2.4.
  • 11. Li XY, Chen WB, Li FR, Kang R. Reliability evaluation with limited and censored time-to-failure data based on uncertainty distributions. Applied Mathematical Modelling 2021; 94: 403–420, https://doi.org/10.1016/j.apm.2021.01.029.
  • 12. Luo M, Wu S. A comprehensive analysis of warranty claims and optimal policies. European Journal of Operational Research 2019; 276(1): 144–159, https://doi.org/10.1016/j.ejor.2018.12.034.
  • 13. Liu B, Wu J, Xie M. Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty. European Journal of Operational Research 2015; 243(3): 874–882, https://doi.org/10.1016/j.ejor.2015.01.030.
  • 14. Liu P, Wang G, Su P. Optimal replacement strategies for warranty products with multiple failure modes after warranty expiry. Computers & Industrial Engineering 2021; 153: 107040, https://doi.org/10.1016/j.cie.2020.107040.
  • 15. Marshall S, Arnold R, Chukova S, Hayakawa Y. Warranty cost analysis: Increasing warranty repair times. Applied Stochastic Models in Business and Industry 2018; 34(4): 544–561, https://doi.org/10.1002/asmb.2323.
  • 16. Nakagawa T. Random maintenance policies. Springer, London 2014, https://10.1007/978-1-4471-6575-0.
  • 17. Park M, Jung KM, Park DH. A generalized age replacement policy for systems under renewing repair-replacement warranty. IEEE Transactions on Reliability 2016; 65(2): 604–612, http://dx.doi.org/ 10.1109/TR.2015.2500358.
  • 18. Sánchez-Silva M, Klutke G. Reliability and Life-Cycle Analysis of Deteriorating Systems. Springer, London 2015, https://doi.org/10.1007%2F978-3-319-20946-3.
  • 19. Shang L, Si S, Cai Z. Optimal maintenance–replacement policy of products with competing failures after expiry of the warranty. Computers & Industrial Engineering 2016; 98: 68–77, https://doi.org/10.1016/j.cie.2016.05.012.
  • 20. Shang L, Si S, Sun S, Jin T. Optimal warranty design and post-warranty maintenance for products subject to stochastic degradation. IISE Transactions 2018; 50(10): 913–927, https://doi.org/10.1080/24725854.2018.1448490.
  • 21. Sheu SH, Liu TH, Zhang ZG, Zhao X, Chien YH. A generalized age-dependent minimal repair with random working times. Computers & Industrial Engineering 2021; 156: 107248, https://doi.org/10.1016/j.cie.2021.107248.
  • 22. Sheu SH, Liu TH, Zhang ZG. Extended optimal preventive replacement policies with random working cycle. Reliability Engineering & System Safety 2019; 188: 398–415, https://doi.org/10.1016/j.ress.2019.03.036.
  • 23. Taleizadeh AA, Mokhtarzadeh M. Pricing and two-dimensional warranty policy of multi-products with online and offline channels using a value-at-risk approach. Computers & Industrial Engineering 2020; 148: 106674, https://doi.org/10.1016/j.cie.2020.106674.
  • 24. Wang L, Pei Z, Zhu H, Liu B. Optimising extended warranty policies following the two-dimensional warranty with repair time threshold. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(4): 523–530, http://dx.doi.org/10.17531/ein.2018.4.3.
  • 25. Wang X, He K, He Z, Li L, Xie M. Cost analysis of a piece-wise renewing free replacement warranty policy. Computers & Industrial Engineering 2019; 135: 1047–1062, https://doi.org/10.1016/j.cie.2019.07.015.
  • 26. Wu S, Zuo MJ. Linear and Nonlinear Preventive Maintenance Models. IEEE Transactions on Reliability 2010; 59(1): 242–249, http:// dx.doi.org/10.1109/TR.2010.2041972.
  • 27. Ye ZS, Murthy DNP. Warranty menu design for a two-dimensional warranty. Reliability Engineering & System Safety 2016; 155: 21–29, https://doi.org/10.1016/j.ress.2016.05.013.
  • 28. Yeh RH, Ho WT, Tseng ST. Optimal production run length for products sold with warranty. European Journal of Operational Research 2000; 120(3): 575–582, https://doi.org/10.1016/S0377-2217(99)00004-1.
  • 29. Zhang S, Zhang Y. Nonlinear mixed reliability model with non-constant shape parameter of aviation cables. Applied Mathematical Modelling 2021; 96: 445–455, https://doi.org/10.1016/j.apm.2021.03.011.
  • 30. Zhang N, Fouladirad M, Barros A. Evaluation of the warranty cost of a product with type III stochastic dependence between components. Applied Mathematical Modelling 2018; 59: 39–53, https://doi.org/10.1016/j.apm.2018.01.013.
  • 31. Zhao X, Nakagawa T. Optimization problems of replacement first or last in reliability theory. European Journal of Operational Research 2012; 223(1): 141–149, https://doi.org/10.1016/j.ejor.2012.05.035.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d6e1a12-abe0-4030-ab53-41c0af932a6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.