Tytuł artykułu
Identyfikatory
Warianty tytułu
Use of res in terrain monitoring systems using UAVS
Języki publikacji
Abstrakty
Artykuł podejmuje tematykę związaną z obecnymi trendami i przyszłymi możliwościami stosowania czynników roboczych w chłodnictwie, klimatyzacji i pompach ciepła. Przedstawia problem wpływu czynników chłodniczych na środowisko naturalne, wskazuje obecne założenia prawne dotyczące użytkowania, gospodarowania i wycofywania szkodliwych czynników chłodniczych z użycia. Przedstawia również perspektywy i przyszłą prawdopodobną strukturę zależności pomiędzy danymi zastosowaniami a czynnikami chłodniczymi w zależności od obszarów świata.
In recent years, rapid progress has been observed in the development of autonomous docking stations for unmanned systems. However, existing solutions often rely on external power sources, significantly limiting their applications. To achieve true long-term autonomy in outdoor conditions, such stations should be powered by renewable energy sources. This paper contributes to the field by presenting the concept, detailed design, implementation, and testing of a prototype solar-powered autonomous docking station. The unique solution of an automatic sun-tracking device with a high range of motion significantly increases the system's efficiency. By utilizing solar radiation, the system can operate continuously for several months with minimal human involvement. The drone is positioned on the landing platform using an active positioning mechanism. Outdoor experiments have confirmed that the system is operational and can be used in missions monitoring various environments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
60--72
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Politechnika Warszawska
autor
- Politechnika Warszawska
autor
- Politechnika Warszawska
Bibliografia
- [1] Ali E, F anni M, Mohamed AM. Design and task management of a mobile solar station for charging flying drones. E3S Web Conf; 167. Epub ahead of print 2020. DOI: 10.105l/e3sconf/202016705004.
- [2] Ali E, Fanni M, Mohamed AM. A New Battery Selection System and Charging Control of a Movable Solar-Powered Charging Station for Endless Flying Killing Drones. Sustain; 14. Epub ahead of print 2022. DOI: 10.3390/su14042071.
- [3] Al-Obaidi MR, Mustafa MA, Wan Hasan WZ, et al. Efficient Charging Pad for Unmanned Aerial Vehicle Based on Direct Contact. 2018 IEEE 5th Int Conf Smart Instrumentation, Meas Appl ICSIMA 2018 2019; 28—30.
- [4] Al-Obaidi MR, Hasan WZW, Mustafa MA, et al. Charging platform of chess-pad configuration for unmanned aerial vehicle (UAV). Appl Sci 2020; 10: 1—13.
- [5] Barrett E, Reiling M, Mirhassani S, et al. Autonomous Battery Exchange of UAVs with a Mobile Ground Base. Proc -" IEEE Int Conf Robot Autom 2018; 699—705.
- [6] Boukoberine MN, Zhou Z, Benbouzid M. Power Supply Architectures for Drones - A Review. IECON Proc (Industrial Electron Conf 2019; 2019—Octob: 5826—5831.
- [7] De Silva SC, Phlemjai M, Rianmora S, et al. Inverted Docking Station: A Conceptual Design for a Battery- Swapping Platform for Quadrotor UAVs. Drones 2022; 6: 1—25.
- [8] Dong X, Ren Y, Meng J, et al. Design and Implementation of Multi-rotor UAV Power Relay Platform. Proc 2018 2nd IEEE Adv Inf Manag Commun Electron Autom Control Conf IMCEC 2018 2018;; 1142—1146.
- [9] Fetisov V, Dmitriyev O, Neugodnikova L, et al. Continuous monitoring of terrestrial objects by means of duty group of multicopters. 20th IMEKO World Congr 2012 2012; 1: 215—219.
- [10] Fujii K, Higuchi K, Rekimoto J. Endless flyer: A continuous flying drone with automatic battery replacement. Proc — IEEE 10th Int Conf Ubiquitous Intell Comput UIC 2013 IEEE 10th Int Conf Auton Trust Comput ATC 2013 2013; 216—223.
- [11] Gabani PR, Gala UB, Narwane VS, et al. A viability study using conceptual models for last mile drone Logistics operations in populated urban cities of India. IET Collab Intell Manuf 2021; 3: 262—272.
- [12] Goh CS, Kuan JR, Yeo JH, et al. A fully solar-powered quadcopter able to achieve controlled flight out ofthe ground effect. Prog Photovoltaics Res Appl 2019; 27: 869—878.
- [13] Grlj CG, Krznar N, Pranjic’ M A Decade of UAV Docking Stations: A Brief Overview of Mobile and Fixed Landing Platforms. Drones 2022; 6: 1—21.
- [14] Henderson T, Jenson D, D’Sa R, et al. Design and Fabrication of a Nomadic Solar-Powered Quad-Rotor. 2020 IntConf Unmanned Aircr Syst ICUAS 2020 2020; 1628—1635.
- [15] Jawad AM, Jawad HM, Nordin R, et al. Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access 2019; 7: 139839—139851.
- [16] Junaid A Bin, Konoiko A, Zweiri Y, et al. Autonomous wireless self-charging for multi-rotor unmanned aerial vehicles. Energies 2017; 10: 1—14.
- [17] Khonji M, Alshehhi M, Tseng CM, et al. Autonomous inductive charging system for battery-operated electric drones. e—Energy 2017 - Proc 8th Int Conf Futur Energy Syst 2017; 322—327.
- [18] Kingry N, Towers L, Liu YC, et al. Design, Modeling and Control of a Solar-Powered Quadcopter. Proc -IEEE Int Conf Robot Autom 2018, 1251—1258.
- [19] Kim SJ, Lim GJ. A hybrid battery charging approach for drone— aided border surveillance scheduling. Drones 2018; 2: 1—11.
- [20] Knitter J, Lai D, Baxter L, et al. Survey of Autonomous Drone Hangars — Opportunities and Challenges for Maritime Platforms. 2024; 2: 81—73.
- [21] Kotarski D, Sanćic' T, Bona M De. Unmanned Ground Vehicle as a Docking Element of a Ground-Aerial Robotic System. 1—13.
- [22] Lai C, Chau MT, Thai R, et al. Methods of Automating Power Swapping Mechanisms for Extending UAV Flight Missions. Wirel Telecommun Symp 2023; 2023—April: 1—10.
- [23] Lahmeri MA, Kishk MA, Alouini MS. Charging Techniques for UAV-Assisted Data Collection: Is Laser Power Beaming the Answer? IEEE Commun Mag 2022, 60: 50—56.
- [24] Lee D, Zhou J, Lin WT. Autonomous battery swapping system for quadcopter. 2015 Int Conf Unmanned Aircr Syst ICUAS 2015 2015; 118—124.
- [25] Louis J, Kedieng F, Bayaola I, et al. Charging Stations placement in Drone Path planning for large space surveillance To cite this version : HAL Id : hal-02925708 Charging Stations placement in Drone Path planning for large space surveillance.
- [26] Lu M, Bagheri M, James AP, et al. Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension. IEEE Access 2018; 6: 29865—29884.
- [27] Mohsan SAH, Othman NQH, Khan MA, et al. A Comprehensive Review of Micro UAV Charging Techniques. Micromachines 2022; 13: 1—30.
- [28] Mourgelas C, Kokkinos S, Milidonis A, et al. Autonomous drone charging stations. A survey. ACM Int Conf Proceeding Ser 2020; 233—236.
- [29] Nieuwoudt H, Welgemoed J. Automated Charging and Docking Station for Security UAVs. 2023 14th Int Conf Mech Intell Manuf Technol 2023; 32—38.
- [30] Park S, Zhang L, Chakraborty S. Battery assignment and scheduling for drone delivery businesses. Proc Int Symp Low Power Electron Des. Epub ahead of print 2017. DOI: 10.1109/ISLPED.2017.8009165.
- [31] Rohan A, Rabah M, Asghar F, et al. Advanced Drone Battery Charging System. J Electr Eng Technol 2019; 14: 1395—1405.
- [32] Sawicki H. K., Piotrowski R.: Zaprojektowanie, wykonanie i sterowanie panelem słonecznym” Rynek Energii. -., iss. 3 (142) (2019), s.67-75.
- [33] Saviolo A, Mao J, B RBTM, et al. AutoCharge: Autonomous Charging for Perpetual Quadrotor Missions. 2023 IEEE Int Conf Robot Autom 2023; 5400—5406.
- [34] Siuzdak K., Klein M., Łapiński K., Cenian A.: Barwnikowe ogniwa słoneczne// Rynek Energii. -., nr. 5 (2015), s.75-83. -
- [35] Toksoz T, Redding J, Michini M, et al. Automated battery swap and recharge to enable persistent UAV missions. AIAA Infotech Aerosp ConfExhib 2011 2011; 0—10.
- [36] cun H, Yuzgec U, Bayilmis C. A review on applications of rotary-wing unmanned aerial vehicle charging stations. Int J Adv Robot Syst 2021; 18: 1—20.
- [37] Wu N, Chacon C, Hakl Z, et al. Design and Implementation of an Unmanned Aerial and Ground Vehicle Recharging System. Proc IEEE Natl Aerosp Electron Conf NAECON 2019; 2019—July: 163—168.
- [38] Yawar SJ, Usmani UA, Ali M, et al. Design and control of solar quadcopter using RF and Arduino. Proc Int Conf Ind Eng Oper Manag 2021; 2370—2378.
- [39] Yu K, Budhiraja AK, Buebel S, et al. Algorithms and experiments on routing of unmanned aerial vehicles with mobile recharging stations. J F Robot 2019, 36. 602—616.
- [40] Zang Z, Ma J, Li C, et al A design of automatic UAV dock platform system. J Phys Conf Ser 2020; 1650: 0—7.
- [41] Zhang YH, Shi . F., Ruan X, et al. UAV Autonomous Charging System based on Multi-Information Cooperative Positioning. 2018; 163: 1465—1470.
- [42] Zhang P, Xu S, Zhang W, et al. A cooperative aerial inspection system with continuable charging strategy. IEEE Int Conf Robot Biomimetics, ROBIO 2019 2019; 770—777
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d6a8c26-91c7-4af7-9cb2-41224e09cd7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.