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1. Introduction

The concept of Riemann integral of set-valued functions was introduced by
Dinghas and Hukuhara, independently, in fifties and sixties. However, the authors
considered only set-valued functions with values being nonempty compact and
convex subsets of euclidean spaces. The main goal of this paper is a generalization
of their definitions to the case of nonempty bounded closed and convex subsets of
Banach spaces, especially of infinite dimensions.
Our work is organized in the following way. In Section 2 we introduce some

definitions and notations that will be needed in the rest of the paper. There are
also given two theorems devoted to the equivalent conditions of integrability of set-
valued functions. The next section contains some properties of integrals defined
in this way, again especially in the case of infinite dimensional spaces. Finally, in
Section 4, we propose to look at the Riemann integral of set-valued functions from
a viewpoint of Hukuhara derivatives.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space and let clb(X) denote the set of all
nonempty convex closed bounded subsets of X . For two subsets A,B ∈ clb(X),

we set A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A} for λ ­ 0 and A
∗

+ B =
cl(A + B) = cl(clA+ clB), where clA means the closure of A in X . It is easy to

see that (clb(X),
∗

+, ·) satisfies the following properties

λ(A
∗

+ B) = λA
∗

+ λB, (λ+ µ)A = λA
∗

+ µA, λ(µA) = (λµ)A, 1 ·A = A

for each A,B ∈ clb(X) and λ ­ 0, µ ­ 0. If A,B,C ∈ clb(X), then the equality

A
∗

+ C = B
∗

+ C implies A = B (see e.g. [2, Theorem II-17, p. 48]). Thus the

cancellation law holds in clb(X) with the operation
∗

+.
The set clb(X) is a metric space with the Hausdorff metric h defined by

h(A,B) = inf {t > 0 : A ⊂ B + tS,B ⊂ A+ tS} ,

where S is the closed unit ball in X . The metric space (clb(X), h) is complete
(see e.g. [2, Theorem II-3, p. 40]). Moreover, the Hausdorff metric h is translation
invariant since

h(A
∗

+ C,B
∗

+ C) = h(A+ C,B + C) = h(A,B)



On the Riemann integral of set-valued functions 7

and positively homogeneous, i.e.,

h(λA, λB) = λh(A,B)

for all λ ­ 0 and A,B,C ∈ clb(X) (cf. [1, Lemma 2.2]).
Let F be a set-valued function defined on an interval [a, b] with values in clb(X).

A set ∆ = {x0, x1, . . . , xn}, where a = x0 < x1 < . . . < xn = b, is called a partition
of [a, b]. For given partition ∆ we put δ(∆) := max {xi − xi−1 : i ∈ {1, . . . , n}}
and form the approximating sum

S(∆, τ) = (x1 − x0)F (τ1)
∗

+ . . .
∗

+ (xn − xn−1)F (τn),

where τ is a system (τ1, . . . , τn) of intermediate points (τi ∈ [xi−1, xi]). A sequence
(∆ν) of partitions is called normal when limν→∞ δ(∆ν) = 0. If for each normal
sequence (∆ν , τν), with ∆ν – partitions of [a, b] and τν , ν ∈ N – systems of
intermediate points, the sequence of the approximating sums (S(∆ν , τν)) always
tends to the same limit I ∈ clb(X), then F is said to be Riemann integrable on
[a, b] and

∫ b

a
F (x)dx := I.

The Riemann integral for set-valued function with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. In paper [6] the above integral
was introduced and some properties for the case F : [a, b]→ clb(X) were studied.

Theorem 1. I ∈ clb(X) is the Riemann integral of F : [a, b]→ clb(X) on [a, b] if
and only if for every ε > 0 there is δ > 0 such that

h (I, S(∆, τ)) < ε (1)

holds for each partition ∆ = {x0, x1, . . . , xn} of [a, b] with δ(∆) < δ and each
system of intermediate points τi ∈ [xi−1, xi].

Proof. Sufficiency. Let us choose an arbitrary normal sequence (∆ν) of partitions
of [a, b] and an arbitrary sequence of systems τν of intermediate points. For each
ε > 0 one may find δ > 0 such that the condition (1) holds for each partition ∆
with diameter δ(∆) < δ. Since the sequence (∆ν) is normal, there is ν0 ∈ N such
that δ(∆ν) < δ for all ν > ν0. On account of (1) we obtain

h (I, S(∆ν , τν)) < ε

for any ν > ν0. So the Riemann integral of F exists and is equal to I.
Necessity. There is a number ε > 0 such that for every δ > 0 there is a par-

tition ∆ of [a, b] with diameter δ(∆) < δ and a system τ of intermediate points
corresponding to ∆ for which
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h

(

∫ b

a

I(x)dx, S(∆, τ)

)

­ ε.

Taking δ = 1
ν
, where ν ∈ N, one may find a sequence (∆ν) of partitions of [a, b] and

corresponding sequence (τν) of systems of intermediate points such that δ(∆ν) < 1
ν

and

h

(

∫ b

a

I(x)dx, S(∆ν , τν)

)

­ ε,

which contradicts the fact that I is a Riemann integral of F . �

In a similar way one may prove the following theorem which gives us two con-
ditions equivalent to the integrability of a set–valued function F : [a, b]→ clb(X).

Theorem 2. Let F : [a, b] → clb(X) be a set-valued function. Then the following
conditions are equivalent

(i) F is integrable on [a, b];

(ii) for every ε > 0 one may find a δ > 0 in such a way that for each partition
∆ of [a, b] with diameter δ(∆) < δ, its subpartition ∆′ and arbitrary sys-
tems τ, τ ′ of intermediate points corresponding to ∆ and ∆′, respectively,
an inequality

h (S(∆, τ), S(∆′, τ ′)) < ε (2)

holds;

(iii) for every ε > 0 there is a δ > 0 such that for all partitions ∆1, ∆2 of [a, b]
with diameters δ(∆k) < δ and systems τk, k ∈ {1, 2}, of intermediate points
corresponding to ∆k, respectively, an inequality

h
(

S(∆1, τ1), S(∆2, τ2)
)

< ε (3)

holds.

Let us denote
‖A‖ := h (A, {0}) , A ∈ clb(X).
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Then we may define:

Definition 3. A set–valued function F : [a, b] → clb(X) is called bounded, if one
may find M > 0 such that ‖F (x)‖ ¬M for all x ∈ [a, b].

In the sequel we will denote

n
∑

i=1

∗Ai := A1
∗

+ . . .
∗

+ An.

Remark 4. If a set–valued function F : [a, b] → clb(X) is integrable, then it is
bounded.

Proof. Let us suppose that F is unbounded and let us denote M(x1) = ‖F (x1)‖,
where x1 = a. Next we choose x2 ∈ [a, b] such that

M(x2) = ‖F (x2)‖ > max {1,M(x1)} .

By the inductive way one may find a sequence (xn), xn ∈ [a, b] for which

M(xn+1) = ‖F (xn+1)‖ > max {n,M(xn)} .

From (xn) we can choose a Cauchy subsequence (xpn). Let x be its limit.
Let us take any ε > 0 and choose δ > 0 in the same way as in Theorem 2 (ii).

It follows that for a fixed partition ∆ = {y0, . . . , ym} with diameter smaller than
δ, its subpartition ∆′ and any systems of intermediate points τ, τ ′ connected with
∆ and ∆′ respectively, the following inequality holds

h (S(∆, τ), S(∆′, τ ′)) < ε. (4)

From (xpn) one may choose monotonic subsequence (un). So there exists
k ∈ {1, . . . ,m} such that almost all un belong to [yk−1, yk]. Since the sequen-
ce (‖F (un)‖) is strictly increasing, the sequence (un) must be strictly monotonic.
So we may assume that un ∈ (yk−1, yk), n ∈ N. Let

Sn = (y1 − y0)F (y0)
∗

+ . . .
∗

+ (yk−1 − yk−2)F (yk−2)
∗

+ (un − yk−1)F (yk−1)
∗

+
∗

+ (yk − un)F (un)
∗

+ (yk+1 − yk)F (yk)
∗

+ . . .
∗

+ (ym − ym−1)F (ym−1)

and
S(∆) = (y1 − y0)F (y0)

∗

+ . . .
∗

+ (ym − ym−1)F (ym−1).
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Hence

ε > h (Sn, S(∆)) =

= h
(

(yk − un)F (un)
∗

+ (un − yk−1)F (yk−1), (yk − yk−1)F (yk−1)
)

=

= h ((yk − un)F (un), (yk − un)F (yk−1)) = (yk − un)h (F (un), F (yk−1)) .

Since
‖F (un)‖ = h (F (un), {0}) ¬ h (F (un), F (yk−1)) + ‖F (yk−1)‖,

we have
ε > (yk − un) (‖F (un)‖ − ‖F (yk−1)‖) .

If x 6= yk, then the right-hand side of the above inequality tends to +∞, what
leads to a contradiction.
If x = yk, then Sn can be defined by

Sn = (y1 − y0)F (y0)
∗

+ . . .
∗

+ (yk−1 − yk−2)F (yk−2)
∗

+ (un − yk−1)F (un)
∗

+
∗

+ (yk − un)F (yk)
∗

+ (yk+1 − yk)F (yk)
∗

+ . . .
∗

+ (ym − ym−1)F (ym−1)

and

ε > h (Sn, S(∆)) =

= h
(

(un − yk−1)F (un)
∗

+ (yk − un)F (yk), (yk − yk−1)F (yk−1)
)

.

Since

‖(un − yk−1)F (un)
∗

+ (yk − un)F (yk)‖ ¬

¬ h
(

(un − yk−1)F (un)
∗

+ (yk − un)F (yk), (yk − yk−1)F (yk−1)
)

+

+ ‖(yk − yk−1)F (yk−1)‖,

we have

ε > ‖(un − yk−1)F (un)
∗

+ (yk − un)F (yk)‖ − ‖(yk − yk−1)F (yk−1)‖,

what yields

ε > (un − yk−1)‖F (un)‖ − (yk − un)‖F (yk)‖ − (yk − yk−1)‖F (yk−1)‖

for all n ∈ N. Then the right-hand side of the above inequality tends to +∞ and
in this case we also obtain a contradiction. �
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3. Properties of the Riemann integral

Now we would like to present some properties of the integral defined in the
previous section. In the sequel a set-valued function F : [a, b] → clb(X) will be
called continuous, if it is continuous with respect to the Hausdorff metric h.

Theorem 5. Each continuous set-valued function F : [a, b]→ clb(X) is integrable.

Next we will consider behaviour of integrals of set-valued functions in case of
subintervals of [a, b].

Theorem 6. If [c, d] ⊂ [a, b] and a set-valued function F : [a, b] → clb(X) is
integrable on [a, b] , then F is integrable on [c, d].

We also have:

Theorem 7. If a set-valued function F : [a, b]→ clb(X) is integrable on [a, c] and
[c, b], then it is integrable on its sum [a, b].

Moreover, we claim that:

Theorem 8. If a set-valued function F : [a, b] → clb(X) is integrable in the Rie-
mann sense on [a, b] and c ∈ (a, b), then

∫ b

a

F (x) dx =
∫ c

a

F (x) dx
∗

+
∫ b

c

F (x) dx. (5)

All proofs of these theorems go with very similar patterns. For reader’s co-
nvenience we will prove the last one. The rest of proofs may be found in [7, pp.
14–18].

Proof of Theorem 8. On account of Theorem 6, F is integrable on intervals [a, c]
and [c, b]. Let us fix a positive integer p and take ∆px = {x0, x1, . . . , xp}, ∆

p
y =

{y0, y1, . . . , yp}, where x0 = a, xp = c = y0, yp = b and xi − xi−1 = c−a
p
,

yi − yi−1 = b−c
p
, i ∈ {1, . . . , p}. Moreover, suppose that τpx = {x1, . . . , xp} and

τpy = {y1, . . . , yp}. Clearly, ∆
p = ∆px ∪∆

p
y is a partition of [a, b], and τ

p = τpx ∪ τ
p
y

is a corresponding system of intermediate points. One may notice that

S(∆p, τp) = S(∆px, τ
p
x )
∗

+ S(∆py, τ
p
y ) (6)
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and
lim
p→∞
δ(∆px) = lim

p→∞
δ(∆py) = lim

p→∞
δ(∆p) = 0.

All integrals in (5) exist, so taking p→∞ in (6), we obtain (5). �

The following theorem also gives us a counterpart of the well–known result
for the Riemann integral of real function. But in case of real functions a stronger
result may be obtained. In the sequel we will come back to this problem.

Theorem 9. Let set-valued functions F,G : [a, b] → clb(X) and a real function
h(F,G) : [a, b]→ [0,∞) be integrable in the Riemann sense on [a, b]. Then

h

(

∫ b

a

F (x) dx,
∫ b

a

G(x) dx

)

¬

∫ b

a

h(F (x), G(x)) dx. (7)

Proof. For an arbitrary natural p let us take a partition ∆p = {x0, x1, . . . , xp}
such that x0 = a, xp = b and xi − xi−1 = b−a

p
for all i ∈ {1, . . . , p} and τp =

{x1, . . . , xp}. Now let us consider Riemann sums for F and G:

SF (∆p, τp) = (x1 − x0)F (x1)
∗

+ . . .
∗

+ (xp − xp−1)F (xp)

and
SG(∆p, τp) = (x1 − x0)G(x1)

∗

+ . . .
∗

+ (xp − xp−1)G(xp).

Since the Hausdorff metric is translation invariant and positively homogeneous,
we obtain

h (SF (∆p, τp), SG(∆p, τp)) ¬
p
∑

i=1

(xi − xi−1)h (F (xi), G(xi)) . (8)

Since lim
p→∞
δ(∆p) = 0, taking p→∞, (8) implies our assertion. �

In case of real functions from the integrability of functions f, g : [a, b] → R it
follows that |f − g| is an integrable function. In case of set-valued function the
situation is quite different and the integrability of F and G does not imply that
h(F,G) is also integrable as the following example shows.

Example 10. Let us suppose that Y is a space of all bounded functions on [0, 1].
Then Y with a norm

‖x‖ = sup
t∈[0,1]

|x(t)|,

is a real Banach space.
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Let V ⊂ (0, 1] be an immeasurable set (with respect to the Lebesgue measure)
and let us define a set–valued function G : [0, 1]→ 2Y by

G(t) =

{

{x | x(u) = 0, u ∈ [0, 1]} , if t ∈ [0, 1] \ V,
{x | x(u) = 0, u ∈ [0, 1] \ {t} , x(t) ∈ [1, 2]} , if t ∈ V.

Let us notice that G(t) are compact and convex subsets of Y . Let us donote by Θ
a function equal to 0 on [0, 1]. We want to show that

h ({Θ} , S(∆, τ)) ¬ 4δ(∆) (9)

for each partition ∆ = {t0 = 0, t1, . . . , tn = 1} of an interval [0, 1] and for each sys-
tem of intermediate points τ = {τ1, . . . , τn}, τk ∈ [tk−1, tk]. Since G has compact
values,

S(∆, τ) =
n
∑

k=1

∆tk G(τk),

where ∆tk = tk − tk−1.
Let us fix an arbitrary x ∈ S(∆, τ) and t ∈ [0, 1]. Since 0 6∈ V , x(0) = 0. Now

we want to find an estimation of |x(t)| for t ∈ (0, 1]. Clearly, there is k ∈ {1, . . . , n}
for which t ∈ (tk−1, tk]. Let us notice that

• if t 6= τk and t 6= τk+1, then x(t) = 0;

• if τk 6= τk+1 and t = τk (or t = τk+1), then x(t) = 0 for t 6∈ V or x(t) ∈
∆tk[1, 2] (x(t) ∈ ∆tk+1[1, 2]) for t ∈ V ;

• if t = tk = τk = τk+1, then x(t) = 0 for t 6∈ V or x(t) ∈ (∆tk +∆tk+1)[1, 2]
for t ∈ V .

In each case |x(t)| ¬ 4δ(∆), t ∈ [0, 1], so ‖x‖ ¬ 4δ(∆), and (9) holds. From
(9) it follows that G is an integrable set-valued function and moreover,

∫ 1

0

G(t)dt = {Θ} .

Let F : [0, 1]→ clb(Y ) be define by a formula F (t) = {Θ}, t ∈ [0, 1]. Therefore
F is integrable as a constant set-valued function.
A mapping [0, 1] ∋ t 7→ h (F (t), G(t)) ∈ [0,∞) takes only two values. Na-

mely, 0 for t 6∈ V and 2 for t ∈ V . On account of definition of V the mapping
h (F (t), G(t)) is immeasurable with respect to the Lebesgue measure, so it is in-
tegrable neither in Lebesgue nor in the Riemann sense.
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We finish this section proving that the counterpart of antiderivative in case of
set-valued mappings is lipschitzian.

Theorem 11. Let F : [a, b]→ clb(X) be integrable on [a, b]. Then the mapping

[a, b] ∋ x 7→
∫ x

a

F (t)dt ∈ clb(X)

is lipschitzian.

Proof. Let x, y ∈ [a, b]. It suffices to consider x 6= y, so one may assume that x < y.
Then

h

(
∫ x

a

F (t)dt,
∫ y

a

F (t)dt
)

= h
(
∫ x

a

F (t)dt,
∫ x

a

F (t)dt
∗

+
∫ y

x

F (t)dt
)

=

= h
(

{0},
∫ y

x

F (t)dt
)

.

Since on account of Remark 4 F is bounded, there is M > 0 such that
h({0}, F (t)) ¬ M for any t ∈ [a, b]. For each normal sequence of partitions ∆ν of
[x, y] and systems τνof intermediate points we have

h

(

{0},
∫ y

x

F (t)dt
)

= h
(

{0}, lim
ν→∞
S(∆ν , τν)

)

=

= lim
ν→∞
h ({0}, S(∆ν, τν)) ¬ (y − x)M,

which completes the proof in case of x < y. For y < x the proof goes with the
same patterns. �

4. The Hukuhara derivative and its relation with

the Riemann integral

For given A,B ∈ clb(X), a set C ∈ clb(X) is called a difference A
∗

− B if

A = B
∗

+ C (see [4, p. 210]). The cancellation law implies that if a difference
exists, then it is unique. The definition of derivative given below is due to M.
Hukuhara (cf. [4, pp. 210–211]). Let F : [a, b] → clb(X) and let x0 ∈ (a, b). F is
differentiable at x0 if there exist the limits

lim
x→x

+

0

F (x)
∗

− F (x0)
x− x0

=: F ′+(x0)
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and

lim
x→x

−

0

F (x0)
∗

− F (x)
x0 − x

=: F ′
−
(x0)

and they are equal. Then a derivative of F at x0 is defined by F ′(x0) := F ′+(x0) =

F ′
−
(x0). In this definition it is assumed that all differences F (x)

∗

− F (x0) and

F (x0)
∗

− F (x) exist for x > x0 and x < x0, respectively, sufficiently close to
x0. Moreover, we say that F is differentiable at a if there is F ′+(a) and F is
differentiable at b if F ′

−
(b) exists. In these cases we set F ′(a) := F ′+(a) and F

′(b) :=
F ′
−
(b).
In the sequel we need the following result.

Lemma 12. If a set-valued function F : [a, b] → clb(X) is continuous, then for
each x ∈ [a, b) the following condition holds:

1
∆x

∫ x+∆x

x

F (y)dy → F (x), for ∆x→ 0+.

Proof. From Theorem 9 it follows that

h

(

1
∆x

∫ x+∆x

x

F (y)dy, F (x)

)

=
1
∆x
h

(

∫ x+∆x

x

F (y)dy,
∫ x+∆x

x

F (x)dy

)

¬

¬
1
∆x

∫ x+∆x

x

h (F (y), F (x)) dy ¬ max
y∈[x,x+∆x]

h (F (y), F (x)) .

The continuity of F at x completes the proof. �

Now we will show relation between the derivative defined above and the Rie-
mann integral of set-valued function introduced in Section 2.

Theorem 13. Let F : [a, b] → clb(X) be a continuous set-valued function. Then
G : [a, b]→ clb(X) defined by

G(x) :=
∫ x

a

F (y) dy

is differentiable on [a, b] and moreover, G′ = F .

Proof. Let us assume that x ∈ [a, b). Choosing ∆x > 0 so small that x +∆x ¬ b,
Theorem 8 yields

∫ x+∆x

a

F (y) dy =
∫ x

a

F (y) dy
∗

+
∫ x+∆x

x

F (y) dy.
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This equality implies that

G(x +∆x)
∗

− G(x) =
∫ x+∆x

a

F (y) dy
∗

−

∫ x

a

F (y) dy =
∫ x+∆x

x

F (y) dy.

From Lemma 12 we get

h

(

G(x+∆x)
∗

− G(x)
∆x

, F (x)

)

= h

(

1
∆x

∫ x+∆x

x

F (y)dy, F (x)

)

→ 0

when ∆x→ 0. So G′+(x) = F (x). The equality G
′

−
(x) = F (x), x ∈ (a, b], may be

shown in the same way. �

Moreover, we have:

Theorem 14. Let F : [a, b] → clb(X) be a continuous set-valued function. If
G : [a, b] → clb(X) is continuous and satisfies G′+(x) = F (x) for all x ∈ [a, b),

then the difference G(b)
∗

− G(a) exists and is equal to

G(b)
∗

− G(a) =
∫ b

a

F (x)dx.

Proof. Let us consider a function ϕ : [a, b]→ R defined by

ϕ(x) = h
(

G(x), G(a)
∗

+
∫ x

a

F (y)dy
)

, x ∈ [a, b].

Clearly, ϕ(a) = h(G(a), G(a)) = 0. It suffices to show that ϕ(b) = 0. Let us choose
any x ∈ [a, b). We will prove that the right–hand lower Dini’s derivative of ϕ at x,
D+ϕ(x), is nonpositive. Let us take ∆x > 0 such that x+∆x ∈ (a, b]. On account

of the existence of G(x + ∆x)
∗

− G(x) for ∆x small enough, properties of the
Hausdorff metric h and Theorem 8 we have

ϕ(x +∆x) = h

(

G(x+∆x), G(a)
∗

+
∫ x+∆x

a

F (y)dy

)

=

= h

(

(

G(x+∆x)
∗

− G(x)
)

∗

+ G(x), G(a)
∗

+
∫ x

a

F (y)dy
∗

+
∫ x+∆x

x

F (y)dy

)

¬

¬ h

(

(

G(x +∆x)
∗

− G(x)
)

∗

+ G(x), G(x)
∗

+
∫ x+∆x

x

F (y)dy

)

+

+ h

(

G(x)
∗

+
∫ x+∆x

x

F (y)dy,G(a)
∗

+
∫ x

a

F (y)dy
∗

+
∫ x+∆x

x

F (y)dy

)

=
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= h

(

G(x +∆x)
∗

− G(x),
∫ x+∆x

x

F (y)dy

)

+ h
(

G(x), G(a)
∗

+
∫ x

a

F (y)dy
)

=

= h

(

G(x+∆x)
∗

− G(x),
∫ x+∆x

x

F (y)dy

)

+ ϕ(x).

Hence

ϕ(x +∆x)− ϕ(x)
∆x

¬
1
∆x
h

(

G(x+∆x)
∗

− G(x),
∫ x+∆x

x

F (y)dy

)

¬

¬ h

(

G(x+∆x)
∗

− G(x)
∆x

, F (x)

)

+ h

(

F (x),
1
∆x

∫ x+∆x

x

F (y)dy

)

.

Since the right-hand side of the above inequality tends to zero when ∆x → 0+

(compare with Lemma 12),

D+ϕ(x) = lim inf
∆x→0+

ϕ(x +∆x)− ϕ(x)
∆x

¬ 0.

So on account of the Zygmund’s Lemma (see. [5, Corollary, p. 183]) the function
ϕ is decreasing. At the same time ϕ takes only nonnegative values and ϕ(a) = 0.
Finally, ϕ(x) = 0 for all x ∈ [a, b) and from the continuity of ϕ we have

ϕ(b) = 0.

�
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Omówienie

W pracy przedstawiono definicję całki Riemanna z funkcji wielowartościo-
wej o wartościach będących niepustymi domkniętymi ograniczonymi i wypukły-
mi podzbiorami rzeczywistej przestrzeni Banacha. Jest ona uogólnieniem definicji
wprowadzonej przez Dinghasa i Hukuhary dla przypadku zwartych i wypukłych
podzbiorów przestrzeni R

n. Dokładną definicję zawiera rozdział 2. W kolejnym
rozdziale rozważamy podstawowe własności tej całki oraz porównujemy jej za-
chowanie z przypadkiem całki Riemanna z funkcji rzeczywistej, podając między
innymi kontrprzykłady w sytuacjach, gdy występują istotne różnice. Ostatni roz-
dział przedstawia związek całki Riemanna z funkcji wielowartościwych z pochodną
Hukuhary.


