PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vessel energy requirement prediction from acceleration stage towing tests on scale models

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most crucial tasks for naval architects is computing the energy required to meet the ship’s operational needs. When predicting a ship’s energy requirements, a series of hull resistance tests on a scale model vessel is carried out in constant speed stages, while the acceleration stage measurements are ignored. Another important factor in seakeeping analysis is the ship’s hydrodynamic added mass. The second law of dynamics states that all this valuable information, that is, the dependence of the hull resistance on the vessel’s speed and the added mass, is accessible from just one acceleration stage towing test done up to the maximum speed. Therefore, the acceleration stage, often overlooked in traditional towing experiments, can be a valuable source of information. For this reason, this work aims to generalise Froude’s scaling procedure to full-scale vessels for the accelerated stage towing tests.
Rocznik
Tom
Strony
4--10
Opis fizyczny
Bibliogr. 18 poz., tab.
Twórcy
Bibliografia
  • 1. W. Froude, “Experiments on the surface-friction experienced by a plane moving through water,” British Association for the Advancement of Science, vol. 42, pp. 118‒124, 1872.
  • 2. W. Froude, “On experiments with HMS Greyhound,” Transactions of the. Institution of Naval Architects, vol. 15, 1874.
  • 3. W. Froude, “Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body,” Transactions of the Institution of Naval Architects, vol. xviii, pp. 77‒97, 1877.
  • 4. G. Hughes, “Friction and form resistance in turbulent flow and a proposed formulation for use in model and ship correlation,” Transactions of the Royal Institution of Naval Architects, vol. 96, pp. 314–376, 1954.
  • 5. M. Kunicka and W. Litwin, “Energy demand of short-range inland ferry with series hybrid propulsion depending on the navigation strategy,” Energies, vol. 12, no. 18, p. 3499, 2019. doi.org/10.3390/en12183499.
  • 6. F. H. Imlay, The complete expressions for added mass of a rigid body moving in an ideal fluid. David Taylor Model Basin, Washington DC, 1961.
  • 7. J. N. Newman, Marine hydrodynamics. The MIT Press, 2018.
  • 8. S. Motora, “On the measurement of added mass and added moment of inertia of ships in steering motion,” in Proceedings of the First Symposium on Ship Maneuverability, David Taylor Model Basin Report, vol. 1461, pp. 241‒274, 1960.
  • 9. H. Ghassemi and E. Yari, “The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method,” Polish Maritime Research, 18, no. 1, pp. 17‒26, 2011. doi.org/10.2478/v10012-011-0003-1.
  • 10. H. Zeraatgar, A. Moghaddas, and K. Sadati, “Analysis of surge added mass of planing hulls by model experiment,” Ships and Offshore Structures, vol. 15, no. 3, pp. 310‒317, 2020. doi.org /10.1080/17445302.2019.1615705.
  • 11. L. Birk, Fundamentals of ship hydrodynamics: Fluid mechanics, ship resistance and propulsion. John Wiley & Sons, 2019.
  • 12. W. Thomson, “On ship waves,” Proceedings of the Institution of Mechanical Engineers, vol. 38, no. 1, pp. 409‒434, 1887, doi. org/10.1243/PIME_PROC_1887_038_028_02.
  • 13. J. H. Michell, “XI. The wave-resistance of a ship,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 45, no. 272, pp. 106‒123, 1898.
  • 14. E. O. Tuck, “The wave resistance formula of JH Michell (1898) and its significance to recent research in ship hydrodynamics,” The ANZIAM Journal, vol. 30, no. 4, pp. 365‒377, 1989. doi. org/10.1017/S0334270000006329.
  • 15. T. H. Havelock, “The wave-making resistance of ships: a theoretical and practical analysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, no. 554, pp. 276‒300, 1909. doi.org/10.1098/rspa.1909.0033.
  • 16. T. H. Havelock, “The theory of wave resistance,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 138, no. 835, pp. 339‒348, 1932. doi.org/10.1098/rspa.1932.0188.
  • 17. A. F. Molland, S. R. Turnock, and D. A. Hudson, Ship resistance and propulsion. Cambridge University Press, 2017.
  • 18. M. Terziev, T. Tezdogan, and A. Incecik, “Scale effects and full-scale ship hydrodynamics: A review,” Ocean Engineering, vol. 245, p. 110496, 2022. doi.org/10.1016/j. oceaneng.2021.110496.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d633525-8d6c-4286-b601-c65f9c8828f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.