PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of voltage transfer function of the three-phase hybrid transformers with voltage or current source matrix converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie relacji napięciowych trójfazowego transformatora hybrydowego z przekształtnikiem matrycowym napięcia lub prądu
Języki publikacji
EN
Abstrakty
EN
This paper deals with a three-phase power system with hybrid transformer (HT). The HT contains a conventional three-phase transformer with electromagnetic coupling and AC/AC converter integrated with the secondary windings through an electric coupling. The HT uses a three-phase Yy connected transformer with additional secondary windings and three-phase voltage or current source matrix converter (VSMC or CSMC), which give possibility to changing the value and phase shifting of the output phase voltage. The paper gives a description of such power system with passive load, as well as the modelling and comparison of voltage transfer functions for both solutions of the HT. The steady state analysis results of power systems with simplified HT mathematical models are verified by means of the simulation and experimental test results obtained for the power system with HT of about 6 kVA.
PL
Artykuł dotyczy trójfazowego systemu zasilania z transformatorem hybrydowym (TH). TH zawiera konwencjonalny transformator trójfazowy ze sprzężeniem elektromagnetycznym i przekształtnik energoelektroniczny typu AC/AC ze sprzężeniem elektrycznym, zintegrowany z uzwojeniami wtórnymi transformatora. W TH jest stosowany transformator uzwojeniami typu Yy oraz dodatkowymi uzwojeniami i trójfazowym przekształtnikiem matrycowym (PM) napięcia lub prądu, które umożliwiają zmianę przesunięcia fazowego napięcia wyjściowego. W artykule opisano działanie takiego systemu zasilania z obciążeniem pasywnym oraz jego modelowanie i porównanie relacji napięciowych dla dwóch rozwiązań TH (z PM napięcia lub prądu). Wyniki analizy właściwości w stanie ustalonym systemu zasilania z uproszczonymi modelemi matematycznymi są weryfikowane za pomocą badań symulacyjnych i eksperymentalnych systemie zasilania z TH o mocy ok. 6 kVA.
Rocznik
Strony
133--138
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
autor
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
Bibliografia
  • [1] Milanowić J., Hiskansen I., Effect of load dynamics on power system damping, IEEE Trans. Power Syst., 10 (1995), n.2, 1022–1028
  • [2] Manson J., Targosz R., European power quality survey report Leonardo Energy, is given in www.leonardo-energy.org. November 2008
  • [3] Djokic Z., Desment J ., Vanalme G., Milanovic J., Stockman K., Sensitivity of personal computer to voltage sags and short interruptions, IEEE Trans. Power Del., 20 (2005), no.1, 375–383
  • [4] Falce A., Matas G., Da Silva Y., Voltage sag analysis and solution for an industrial plant with embedded induction motors, in Proc. IEEE Industry Applications Conference, IAS’04, 4 (2004), 2573–2578
  • [5] Duran-Gomez J. , Enjeti P, Woo N. B., Effect of voltage sags on adjustable-speed drives: a critical evaluation on an approach to improve performance, IEEE Trans. Ind. Appl., 35 (1999), no.6, 1440–1449
  • [6] Jang D., Choe G., Step-up/down ac voltage regulator using transformer with tap changer and PWM ac chopper, IEEE Trans. Ind. Electron., 45 (1998), No.6, 905–911
  • [7] Campo Rodríguez J. C., Lopez J. V, Cagigal Olay C.,. Fernandez S. M, Garcia R. V.,. García S. M, Dual-Tap Chopping Stabilizer With Subcyclic AC Soft Switching, IEEE Trans. Ind. Electron., 57 (2010), No.9, 3060–3074
  • [8] Fedyczak Z., PWM AC voltage transforming circuits, University of Zielona Gora Press, 2003, (in Polish)
  • [9] Fedyczak Z., Strzelecki R., Benysek G., Singlephase PWM AC/AC semiconductor transformer topologies and applications, in Proc. PESC’02, Cairns, 2 (2002), 1048–1053
  • [10] Montero-Hernandez O. C., Enjeti P.N., Application of a Boost AC-AC Converter to Compensate for Voltage Sags In Electric Power Distribution Systems, in Proc PESC 2000, Galway, 1 (2000), 470–475
  • [11] Fedyczak Z., Strzelecki R., Sozański K., Control and testing of a Dynamic Voltage Restorer (DVR) at medium voltage level, IEEE Trans. Power Electron., 19 (2004), 806–813
  • [12] Aeoliza E.C., Enjeti N.P, Moran L.A., Montero-Hernandez O. C., Sangsun Kim, Analysis and Design of a Novel Voltage Sag Compensator for Critical Loads in Electrical Power Distribution Systems, IEEE Trans. Ind. Appl., 39 (2003), 1143–1150
  • [13] Choi N., Li Y., Modeling and Analysis of AC Line Conditioner Based on Three-Phase PWM Cuk AC-AC Converter, in Proc. Industrial Electronics Society Conference, IECON’04, Busan, Korea, 2 (2004), 1646–1651
  • [14] Fedyczak Z., Frąckowiak L., Jankowski M., Kempski A., Single-Phase Serial AC Voltage Controller Based on Bipolar PWM AC Matrix-Reactance Chopper, in Proc. Power Electronics and Applications, European Conference, EPE’05, Dresden, (2005)
  • [15] Nielsen J. G., Newman M., Nielsen H., Blaabjerg F., Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level, IEEE Trans. Power Electron., 19 (2004), 806–813
  • [16] Kanjiyga P., Singh B., Chandra A., Al-Haddad K., SRF Theory Revisited to Control Self-Supported Dynamic Voltage Restorer (DVR) for Unbalanced and Nonlinear Loads, IEEE Trans. Ind. Appl., 49 (2013), no.5, 2330–2340
  • [17] Garcia-Vite P. M. , Mancilla-David F., Ramirez J. M., Per-Sequence Vector-Switching Matrix Converter Modules for Voltage Regulation, IEEE Trans. Ind. Electron., 60 (2013), no.12, 5411–5421
  • [18] Lozano J. M., Ramirez J. M., Correa R. E., A Novel Dynamic Voltage Restorer based on Matrix Converters, in Proc. Modern Electric Power Systems, MEPS’10, Wroclaw, Poland, (2010), 1–7
  • [19] Shabanpour A., Reza Seifi A., A Dynamic Voltage Restorer based on Matrix Converter with Fuzzy Controller, Advances in Electrical and Electronic Engineering, 10 (2012), no.3, 143–151
  • [20] Ezoji H., Sheikholeslami A, Tabasi M., Saeednia M. M., Simulation of Dynamic Voltage Restorer Using Hysteresis Voltage Control, European Journal of Scientific Research, 27 (2009), 152–166
  • [21] Vilathgamuwa M., Perera A. A. D. R., Choi S. S, Performance Improvement of the Dynamic Voltage Restorer With Closed-Loop Load Voltage and Current-Mode Control, IEEE Trans. Power Electron., 17 (2002), no.5, 824–834
  • [22] Aeloiza E.C., Enjeti P. N., Moran L. A., Pitel I., Next Generation Distribution Transformer: to Address Power Quality for Critical Load, in Proc. Power Electronics Specialist Conference, PESC’03, Acapulco, Mexico, 3 (2003), 1266–2171
  • [23] Fedyczak Z., Kaniewski J., Klytta M., Single-Phase Hybrid Transformer Using Matrix-Reactance chopper with Ćuk Topology, in Proc. Power Electronics and Applications, European Conference, EPE’07, Denmark, Aalborg, (2007)
  • [24] Fedyczak Z., Kaniewski J., Modeling and Analysis of Three-Phase Hybrid Transformer Using Matrix Converter, in Proc. Compatibility in Power Electronics, CPE’07, Gdańsk, Poland, (2007), 1–6
  • [25] Kaniewski J., Fedyczak Z., Modelling and Analysis of Three-Phase Hybrid Transformer Using Matrix-Reactance Chopper, Przegląd Elektrotechniczny, (2009), no. 2, 100–105
  • [26] Kaniewski J., Fedyczak Z., Klytta M., Lukiewski M. , Szczesniak P., Implementation of a Three-Phase Hybrid Transformer Using a Matrix Chopper, in Proc. Power Electronics and Applications, European Conference, EPE’09, Barcelona, Spain, (2009), 1–10
  • [27] Kaniewski J., Fedyczak Z., Modeling and Analysis of a Three-Phase Quadrature Phase Shifter with a Hybrid Transformer, Przegląd Elektrotechniczny, (2008), no.11, 269-274
  • [28] Kaniewski J., Practical Application of Series Active Compensators, in. Power Theories for Improved Power Quality, eds. G. Benysek, M. Pasko, Springer London, 2012
  • [29] Kaniewski J., Modeling and Analysis of Three-Phase Hybrid Transformer Using Buck-Boost MRC, in Proc. Compatibility and Power Electronics, CPE’11, Tallinn, Estonia, (2011), 202–207
  • [30] Kaniewski J., Analysis and study of properties of the hybrid transformers, Ph.D. dissertation, University of Zielona Góra Press, Zielona Góra 2011, (in Polish).
  • [31] Kaniewski J., Fedyczak Z., Benysek G., AC Voltage Sag/Swell Compensator Based on Three-Phase Hybrid Transformer with Buck-Boost Matrix-Reactance Chopper, IEEE Trans. Ind. Electron., 61 (2014), no.8, 3835–3846
  • [32] Szcześniak P., Kaniewski J., A Voltage Regulator/ Conditioner Based on a Hybrid Transformer with Matrix Converter, in Proc. Industrial Electronics Society Conference, IECON’14, Dallas, (2014), 3292–3297
  • [33] Fedyczak Z., Tadra G., Klytta M., Implementation of the Current Source Matrix Converter Space Vector Modulation, in Proc. Power Electronics and Motion Control Conference, EPE-PEMC’10, Ohrid, (2010), T2-97–T2-102
  • [34] Venturini M. and Alesina A., The Generalized Transformer: a New Bi-Directional Sinusoidal Waveform Frequency Converter with Continuously Adjustable Input Power Factor, in Proc. IEEE Power Electronics Specialists Conference, PESC’80, (1980), 242-252
  • [35] Wheeler P. W., Rodriguez J., Clare J. C., Empringham L., Weinstejn A., Matrix converters: A Technology Review, IEEE Trans. Ind. Electron., 49 (2002), no.2, 276–288
  • [36] Lyons R. G, Sum of two sinusoids, For free publication by IOWEGIAN, (2011)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d5426ac-bbd4-43da-b554-dd7efc76cc50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.