PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of magnesite and calcite based on flotation solution chemistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dissolution characteristics of minerals, dissolution of flotation agents in solutions, and equilibrium of dissociations and associations serve as the basis for determining the optimal conditions for the effective components of flotation agents and for evaluating the interaction between flotation agents and minerals. This basis provided the theoretical support for the flotation separation of minerals. Based on this, the flotation separation of magnesite and calcite was realized using sodium dihydrogen phosphate, also known as monosodium phosphate (MSP), as a regulator and dodecylamine (DDA) as a collector. When MSP was used in the DDA system, single-mineral and binary mixed-ore flotation tests revealed that the floatability of calcite was significantly greater than that of magnesite and the separation of magnesite and calcite was more effective, respectively. Zeta potential measurements showed that MSP-containing negative groups could selectively reduce the zeta potential of calcite and promote the adsorption of DDA-containing positive groups on the surface of the calcite. However, this effect was negligible on the zeta potential of magnesite. Due to the stronger affinity of MSP to Ca2+ than that to Mg2+, as demonstrated by Fourier transform infrared and X-ray photoelectron spectroscopy analyses, the MSP was adsorbed onto the surface of calcite primarily by hydrogen bonds rather than magnesite, which promoted the stronger adsorption of DDA-containing positive groups on the surface of the calcite. As a result, the differences in the floatability of magnesite and calcite were enlarged by MSP. Thus, MSP can be utilized an effective regulator for the efficient separation of magnesite from calcite via reverse flotation.
Słowa kluczowe
Rocznik
Strony
art. no. 149398
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
Bibliografia
  • BOTERO, A.E.C., TOREM, M.L. DE MESQUITA, L.M.S., 2008. Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation, Minerals Engineering, 21, 83-92.
  • Brik, M.G. 2011. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3, Physica B-Condensed Matter, 406, 1004-12.
  • BOTERO, A.E.C., TOREM, M.L. DE MESQUITA, L.M.S., 2007. Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite, Minerals Engineering, 20, 1026-32.
  • CASES, J.M., VILLIERAS, F., MICHOT L.J., BERSILLON J.L., 2002. Long chain ionic surfactants: the understanding of adsorption mechanisms from the resolution of adsorption isotherms, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 205, 85-99.
  • CHEN, G.L., TAO. G., 2004. Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate, Separation Science and Technology, 39, 377-90.
  • DENG, R., YANG, X., HU, Y., KU, J., ZUO, W., MA, Y., 2018. Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite, Minerals Engineering, 118, 133-40.
  • GAO, Z., SUN, W., HU, Y., 2015. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model, Minerals Engineering, 79, 54-61.
  • GUO, J.-X., SHU, S., LIU, X.-L., WANG, X.-J., YIN, H.-Q., CHU, Y.-H., 2017. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid, Environmental Technology, 38, 266-76.
  • HOU, Q., LUO, X., LI, M., AN, D., XIE, Z., 2021. Non-isothermal kinetic study of high-grade magnesite thermal decomposition and morphological evolution of MgO, International Journal of Applied Ceramic Technology, 18, 765-72.
  • LI, P., DAI, S., SUN, W., FAN, M., 2021. Study on regulators of purifying magnesite ore by cationic reverse flotation, Scientific Reports, 11.
  • LINKE, W.F., SEIDELL, A. 1958. Solubilities-Inorganic and metal-organic compounds', a compilation of solubility data from the periodical literature, Ⅱ.
  • LU, Y.-P., ZHANG, M.-Q., FENG, Q.-M., LONG, T., OU, L.-M., ZHANG. G.-F., 2011. Effect of sodium hexametaphosphate on separation of serpentine from pyrite, Transactions of Nonferrous Metals Society of China, 21, 208-13.
  • LUO, N., WEI, D., SHEN, Y.,BHAN, C., ZHANG, C,. 2017. Elimination of the Adverse Effect of Calcium Ion on the Flotation Separation of Magnesite from Dolomite, Minerals, 7.
  • MATIS, K.A., BALABANIDIS, T.N., GALLIOS, G.P., 1988. Processing of magnesium carbonate fines by dissolved-air flotation, Colloids and Surfaces, 29: 191-203.
  • MOMENZADEH, L., MOGHTADERI, B., LIU, X.F., SLOAN, S.W., BELOVA, I.V., MURCH, G.E., The thermal conductivity of magnesite, dolomite and calcite as determined by molecular dynamics simulation, In, 18-34. Trans Tech Publ.
  • SANCHEZ-ESPANA, J., DE CORTAZAR, A.G., GIL, P., VELASCO, F., 2002. The discovery of the Borobia world-class stratiform magnesite deposit (Soria, Spain): a preliminary report, Mineralium Deposita, 37, 240-43.
  • SHUAI, S., LIU, Y., ZHAO, C., ZHU, H., LI, Y., ZHOU, K., GE, W., HAO, J., 2020. 'Improved synthesis of graphene oxide with controlled oxidation degree by using different dihydrogen phosphate as intercalators', Chemical Physics, 539.
  • SONG, S., LOPEZ-VALDIVIESO, A., MARTINEZ-MARTINEZ, C., TORRES-ARMENTA, R., 2006. Improving fluorite flotation from ores by dispersion processing, Minerals Engineering, 19, 912-17.
  • SUN, H., HAN, F., YIN, W.-Z., HONG, J., YANG, B., 2020. Modification of selectivity in the flotation separation of magnesite from dolomite, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 606.
  • SUN, H., YANG, B., ZHU, Z., YIN, W., SHENG, Q., HOU, Y., YAO, J., 2021. New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model. Minerals Engineering 160.
  • SUN, W., DAI, S., LIU, W., LI, P., DUAN, H., YU, X., 2021. Effect of Ca(II) on anionic/cationic flotation of magnesite ore, Minerals Engineering, 163.
  • SUN, W, LIU, W., DAI, S., YANG, T., DUAN, H., LIU, W., 2020. Effect of Tween 80 on flotation separation of magnesite and dolomite using NaOL as the collector, Journal of Molecular Liquids, 315.
  • TANG, Y., KELEBEK, S., YIN, W., 2020. Surface chemistry of magnesite and calcite flotation and molecular dynamics simulation of their cetyl phosphate adsorption, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 603.
  • TANG, Y., YIN, W., KELEBEK, S., 2020. Selective flotation of magnesite from calcite using potassium cetyl phosphate as a collector in the presence of sodium silicate, Minerals Engineering, 146.
  • TENG, Q., FENG, Y., LI, H., 2018. Effects of silicate-bacteria pretreatment on desiliconization of magnesite by reverse flotation, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 544, 60-67.
  • WANG, J., GAO, Z., GAO, Y., HU, Y., SUN, W., 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors, Minerals Engineering, 98, 261-63.
  • WEI, J., GE, J., ROUFF, A.A., WEN, X., MENG, X., SONG, Y., 2019. Phosphorus recovery from wastewater using light calcined magnesite, effects of alkalinity and organic acids, Journal of Environmental Chemical Engineering, 7.
  • WONYEN, D.G., KROMAH, V., GIBSON, B., NAH, S., CHELGANI, S.C., 2018. A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite), Minerals, 8.
  • YANG, B., SUN, H., WANG, H., YIN, W., CAO, S., WANG, Y., ZHU, Z., JIANG, K., YAO, J., 2020. Selective adsorption of a new depressant Na(2)ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Separation and Purification Technology, 250.
  • YANG, B.,, YIN, W., YAO, Y., SHENG Q., ZHU, Z., 2022. Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study, Applied Surface Science, 571.
  • YANMIS, D., ORHAN, F., GULLUCE, M., SAHIN, F., 2015. Biotechnological magnesite enrichment using a carbonate dissolving microorganism, Lactococcus sp, International Journal of Mineral Processing, 144, 21-25.
  • YAO, J., YIN, W., GONG, E., 2016. Depressing effect of fine hydrophilic particles on magnesite reverse flotation, International Journal of Mineral Processing, 149: 84-93.
  • YAO, J., SUN, H., BAN, X., YIN. W., 2021. Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 618.
  • YAO, J., SUN, H., HAN, F., YIN, W., HONG, J., WANG, J., WON, C., DU, L., 2020. Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control, Powder Technology, 362, 698-706.
  • YAO, J., SUN, H., YANG, B., ZHOU, Y., YIN, W., ZHU, Z., 2020. Selective co-adsorption of a novelmixed collector ontomagnesite surface to improve the flotation separation of magnesite from dolomite, Powder Technology, 371, 180-89.
  • YIN, W., SUN, H., HONG, J., CAO, S., YANG, B., WON, C., SONG, M., 2019. Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite, Minerals Engineering, 144.
  • YIN, W., YANG, B., FU, Y., CHU, F., YAO, J., CAO, S., ZHU, Z., 2019. Effect of calcium hypochlorite on flotation separation of covellite and pyrite, Powder Technology, 343: 578-85.
  • YUAN, S., WANG, R., GAO, P., HAN, Y., LI, Y., 2022. Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals, Powder Technology, 396: 80-91.
  • ZHAO, Z., CUT, X., WANG, D., CHEN, Y., BAI, G., LI, J., LIU, X., . 2015. Review of the Metallogenic Regularity of Magnesite Deposits in China, Acta Geologica Sinica-English Edition, 89, 1747-61.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d5075ab-0000-4887-9c04-6063e723077e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.