Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Przegląd zrównoważonych praktyk górniczych w zakresie ekologicznej rekultywacji obszarów zdegradowanych terenów górniczych w Zagłębiu Górniczym Rovinari (Rumunia). Studium przypadku: wewnętrzne składowisko w Północnej Peșteanie
Języki publikacji
Abstrakty
Open-pit mining, regardless of the nature of deposit and the exploitation type (continuous or discontinuous), produces long-term negative effects on the environment. The immediately visible effects are related to the changes in the morphological configuration and the landscape: the disappearance of the plant cover and topsoil on the entire surface of the mining perimeter, the development of deep open-pits, the appearance of waste dumps, the construction of premises and technological roads, etc. The uncovering of a deposit is carried out by removing the vegetation and excavating the soil, followed by the excavation of the sterile material from the deposit's roof, and is a destructive action with consequences for the local habitat and fauna on long term and sometimes, unfortunately, the effects can be hardly reversible or even irreversible. The environmental component that suffers the most as a result of mining is the soil and with it the entire ecosystem in the area. Soil is a resource that is very difficult to regenerate. Natural soil formation takes a long time, tens and hundreds of years. Therefore, it is important to find and apply solutions to maintain or improve its quality whenever possible or to support the pedogenesis process by applying sustainable practices in order to accelerate it. Some of these practices can be applied even during mining activities. The purpose of this research is to find and recommend the best solutions that can be applied in different stages of the lifecycle of a mine and which, applied together, have a synergistic role and a remarkable effect on the pedogenesis process and on its duration. That is why it is very important to design the mining activity from opening to closing, taking into account the decommissioning of buildings, the rehabilitation and revegetation of degraded lands for the subsequent inclusion in the landscape and the resumption of its functions.
Górnictwo odkrywkowe, niezależnie od charakteru złoża i rodzaju eksploatacji (ciągła lub nieciągła), powoduje długotrwałe negatywne skutki dla środowiska. Natychmiast widoczne efekty są związane ze zmianami morfologii i krajobrazu: zanik szaty roślinnej i wierzchniej warstwy gleby na całej powierzchni wyrobiska, rozwój głębokich odkrywek, pojawienie się składowisk odpadów, budowa obiektów, dróg technologicznych itp. Prowadzone jest odsłanianie złoża poprzez usunięcie roślinności i usunięcie gleby, a następnie wydobycie materiału ze stropu złoża, jest to działanie destrukcyjne mające negatywne konsekwencje dla środowiska w tym lokalnych siedlisk fauny. W dłuż-szej perspektywie, skutki mogą być trudno odwracalne lub nieodwracalne. Elementem środowiska, który ucierpi najbardziej górnictwa jest gleba, a wraz z nią cały ekosystem na tym obszarze. Gleba jest zasobem, który jest bardzo trudny do regeneracji. Naturalne tworzenie się gleby zajmuje dużo czasu, dziesiątki i setki lat. Dlatego ważne jest znalezienie i zastosowanie rozwiązań pozwalających na utrzymanie lub poprawę jego jakości gleby, wspieranie procesu pedogenezy poprzez stosowanie zrównoważonych praktyk. Niektóre z tych praktyk można stosować już podczas działalności wydobywczej. Celem przedstawionych badań jest znalezienie i zarekomendowanie najlepszych rozwiązań możliwych do zastosowania różnych etapach cyklu życia kopalni, które stosowane łącznie pełnią rolę synergistyczną oraz niezwykły wpływ na proces pedogenezy i czas jego trwania. Dlatego bardzo ważne jest zaprojektowanie działalności wydobywczej od otwarcia do zamknięcia, biorąc pod uwagę likwidację budynków, rekultywację i ponowne zazielenienie terenów zdegradowanych.
Czasopismo
Rocznik
Tom
Strony
235--245
Opis fizyczny
Bibliogr. 38 poz, rys., tab., zdj.
Twórcy
autor
- University of Petroșani, Faculty of Mining, Department of Environmental Engineering and Geology
autor
- University of Petroșani, Faculty of Mining, Department of Environmental Engineering and Geology
autor
- University of Petroșani, Faculty of Mining, Department of Environmental Engineering and Geology;
autor
- University of Petroșani, Faculty of Mining, Department of Environmental Engineering and Geology;
Bibliografia
- 1. Apostu, I.M., Geotechnical risks in the conditions of flooding of remaining gaps of lignite open-pits (in Romanian), Universitas PH, Petroșani, 2021.
- 2. Aznar-Sánchez, J.A., Velasco-Muñoz, J.F., Belmonte-Ureña, L.J., Manzano-Agugliaro, F., Innovation and technology for sustainable mining activity: A worldwide research assessment, Journal of Cleaner Production, 221, pp. 38-54, 2019.
- 3. Bastida, A. E., Aguado, A. Y., Intensification of mining's contribution to sustainable development in Romania: a legal & political framework (in Romanian), Soros Foundation Romania, Program "Exploitation of Natural Resources - Legal Framework", 2008
- 4. Bruel, A., Kronenberg, J., Troussier, N., Guillaume, B., Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy, Journal of Industrial Ecology, 23 (1), pp. 12-21, 2018.
- 5. Cecchin, A., Salomone, R., Deutz, P., Raggi, A., Cutaia, L., Relating Industrial Symbiosis and Circular Economy to the Sustainable Development Debate. In: Salomone, R., Cecchin, A., Deutz, P., Raggi, A., Cutaia, L. (eds) Industrial Symbiosis for the Circular Economy. Strategies for Sustainability. Springer, Cham, 2020.
- 6. Davidescu, V., Davidescu, D., Agrichemical Compendium (in Romanian), Romanian Academy Publishing House, Bucharest, Romania, 1999.
- 7. DOA, Rating for chemical properties of soil in Peninsular Malaysia. Soil Management Division, Department of Agriculture Malaysia, 1997.
- 8. Dumitru, M., Dumitru S., Tănase, V., Mocanu, V., Manea, A., Vrînceanu, N., Preda, M., Eftene, M., Ciobanu, C., Calciu, I., Rîșnoveanu, I., Soil quality monitoring in Romania (in Romanian), National Research and Development Institute for Pedology, Agrochemistry and Environmental Protection ICPA Bucharest, Sitech PH, Craiova, 2011.
- 9. Feng, Y., Wang, J., Bai, Z., Reading, L., Effects of surface coal mining and land reclamation on soil properties: A review, Earth-Science Reviews, 191, pp. 12-25, 2019.
- 10. Florea, N., Munteanu, I., The Romanian Soil Taxonomy System (SRTS) (in Romanian), Bucureşti, 2012.
- 11. Fodor, D., Lazăr, M., Occupation and ecological rehabilitation of land in the Oltenia area (in Romanian), Agir Bulletin, 3, 2006.
- 12. Ghose, M.K., Land reclamation and protection of environment from the effect of coal mining operation, Mine technology, 10(5), pp. 35-39, 1989.
- 13. Ghose, M.K., Soil conservation for rehabilitation and revegetation of mine-degraded land. TIDEE – TERI Information Digest on Energy and Environment, 4(2), pp. 137-150, 2005.
- 14. Haiwen, Z., Population growth and industrialization. Published in: Economic Inquiry, 47 (2), pp. 249-265, 2019.
- 15. Hilson, G., Murck, B., Sustainable development in the mining industry: clarifying the corporate perspective, Resources Policy, 26 (2000), pp. 227-238, Elsevier Science Ltd, 2001.
- 16. Hebda W., Fossil fuels in the energy transition – the case of Romania, GSM – Mineral Resources Management, Vol. 39 Iss. 4, pp. 85–106, 2023, DOI: 10.24425/gsm.2023.148159
- 17. Howard, J., Anthropogenic Soils, Progress in Soil Science, 2017.
- 18. Lazăr, M., Degreaded mining land rehabilitation (in Romanian), Universitas PH, Petroșani, 2010.
- 19. Malan, S., How to Advance Sustainable Mining, IISD, Earth Neg. Bulletin, 2021.
- 20. Malek, M.Y., Kamaruzaman, J., Mohd, H.I., Soil Nutrient Varibility Mapping in UiTM Research Station, Arau, Perlis Using Landsat TM and Geostatistical Analysis, Proceedings of the 6th WSEAS International Conference on Remote Sensing, Spain, 2006.
- 21. Miranda ,M., Chambers, D., Coumans, C., Framework for Responsible Mining: A guide to Evolving Standards, 2005.
- 22. Nanu, G., Ecological reconstruction of the area related to the Pestana open-pits in the Rovinari mining basin (in Romanian), Doctoral Thesis, University of Petrosani, Petrosani, 2015.
- 23. 2Nyari, I., Mining of lignite from the Rovinari mining basin in the context of sustainable development (in Romanian), issertation Thesis, University of Petrosani, Petrosani, 2016.
- 24. Roberts, B.H., The application of industrial ecology principles and planning guidelines for the development of eco-industrial parks: an Australian case study, Journal of Cleaner Production, 12 (8–10), pp. 997-1010, 2004.
- 25. Sariatli F., "Linear Economy Versus Circular Economy: A Comparative and Analyzer Study for Optimization of Economy for Sustainability" Visegrad Journal on Bioeconomy and Sustainable Development, vol.6, no.1, 2017, pp.31-34.
- 26. Schaetzl, R. J., Anderson, S., Soils: Genesis and Geomorphology, Cambridge University Press, 2005.
- 27. Scorțariu, O., Guran, I., Lazăr, M., Obtaining anthropogenic soils from waste rocks for reclamation of damaged land by coal pits from Oltenia, 22nd World Mining Congress&Expo, Istanbul, 2011.
- 28. Sheoran, V.; Sheoran, A. S.; and Poonia, P., Soil Reclamation of Abandoned Mine Land by Revegetation: A Review, International Journal of Soil, Sediment and Water, 3 (2), Art. 13, 2010. Pont, A., Robles A., Gil, J.A., e-WASTE: Everything an ICT Scientist and Developer Should Know, in IEEE Access, 7, pp. 169614-169635, 2019.
- 29. Smeu, A. C., Effective solutions for the construction and management of waste dumps from the Rovinari and Motru Mining Basins for recycling in the economic circuit (in Romanian), Doctoral Thesis, University of Petrosani, Petroșani, 2012.
- 30. United Nations Development Programme (UNDP), Managing mining for sustainable development: A sourcebook, 2018.
- 31. Walker, A.M., Vermeulen, W.J.V., Simboli, A., Raggi, A., Sustainability assessment in circular inter-firm networks: An integrated framework of industrial ecology and circular supply chain management approaches, Journal of Cleaner Pro-duction, 286 (125457), 2021.
- 32. Wilmoth, J., Menozzi, C., Bassarsky, L., Why population growth matters for sustainable development, United Nations Department of Economic and Social Affairs, Population Division/UNDESA, 2022.
- 33. Zanella, A., Schad, P., Galbraith, J., Ponge, J.-F. Humusica 2, Article 14: Anthropogenic soils and humus systems, comparing classification systems, Appl. Soil Ecol., 122, pp. 200–203 2018.
- 34. ***, Case Studies in Sustainable Development in the Coal Industry, Coal Industry Advisory Board, International Energy Agency, 2006. https://www.iea.org/reports/case-studies-in-sustainable-development-in-the-coal-industry
- 35. ***, Oltenia Energy Complex Documentation (C.E.O.), 2019 - 2023. https://www.gem.wiki/Tismana_1_%26_2_Coal_Mine
- 36. ***, Ministry of Energy, Lignite Group Report, Lignite - Mining Activity (in Romanian), Mineral Energy Resources Sector, 2016.
- 37. ***, S.C. - Institute of Scientific Research, Technological Engineering and Design of Lignite Mines - S.A. Craiova (I.C.S.I.T.P.M.L.), Environmental impact study report, continuation of mining works in the license perimeter for U.M.C. Peșteana - North Peșteana open-pit proposed to be located in the extra-urban/intra-urban area of Urdari, Bălteni and Plopșoru communes (in Romanian), Gorj county, symbol 810 - 537, 2012.
- 38. ***, A guide to leading practice sustainable development in mining, University of New South Wales. Australian Centre for Sustainable Mining Practices. Department of Resources, Energy and Tourism, Canberra, Dept. of Resources, Energy and Tourism, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d4c8c44-2b7b-4d58-934d-0ab29b31bda3