Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this experimental study was to compare the ability of polyurethane cushions of three arbitrary selected thicknesses to minimize vibrations transmitted from the wheelchair to its user. Methods: Measurements were made during passive motion on five different surfaces often found in public spaces. Two tests were carried out during the measurements. In the first test, the sensor was located directly on the surface of the wheelchair seat. In the second test, a polyurethane cushion was placed on the seat, on which the measuring sensor was then placed. Results: The study showed that regardless of the surface on which the wheelchair user moves, the threshold defined in the ISO standard for frequencies in the range of 4–40 Hz was exceeded. However, thanks to the use of polyurethane cushions, vibration damping was visible for frequencies ranging from 10 to 40 Hz. The impact of the user’s weight on the magnitude of the perceived vibrations was also observed. Conclusions: Studies show that wheelchair users are exposed to whole body vibration that can negatively affect their health. Cushions made of polyurethane seem to be a promising solution to reduce whole body vibration in the frequency range that is burdensome and harmful to human health.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
137--149
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
- Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland.
autor
- Laboratory of Techno-Climatic Research and Heavy Duty Machines, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland.
autor
- Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland.
autor
- Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland.
Bibliografia
- [1] AKINOGLU B., PAKOZ B., KOCAHAN B., Investigation of sitting position of paralympic wheelchair basketball players, Acta Bioeng. Biomech., 2021, 23 (4), 43-51, DOI: 10.37190/ ABB-01920-2021-04.
- [2] ASGARIFAR N., LASHGARI M., Vibration characteristics of tractor seat cushion materials, Iran Agricultural Research, 2020, 39 (1), 109–120.
- [3] AYARI H., THOMAS M., DORÉ S., A design of experiments for statistically predicting risk of adverse health effects on drivers exposed to vertical vibrations, Int. J. Occup. Saf. Ergon., 2011, 17 (3), 221–232, DOI: 10.1080/10803548.2011.11076888.
- [4] BASCOU J., SAURET C., LAVASTE F., PILLET H., Is bearing resistance neglible during wheelchair locomotion? Design and validation of a testing device, Acta Bioeng. Biomech., 2017, 19 (3), 165–176, DOI: 10.5277//abb-00659-2016-03.
- [5] BAUER N., DELAZIO A., KARG P., BRIENZA D., Visual characterization of wheelchair cushions following simulated aging, RESNA Annual Conference, 2020, 1–4.
- [6] BŁAŻKIEWICZ M., WISZOMIRSKA I., FIOK K., MRÓZ A., KOSMOL A., MIKICIN M., MOLIK B., MARSZAŁEK J., Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain, Acta Bioeng. Biomech., 2019, 21 (3), 67–74, DOI: 10.5277/ABB-01322-2019-02.
- [7] BONINGER M.L., COOPER R.A., FITZGERALD S.G., LIN J., COOPER R., DICIANNO B., LIU B., Investigating neck pain in wheelchair users, Am. J. Phys. Med. Rehabil., 2003, 82, 197–202, DOI: 10.1097/01.PHM.0000054217.17816.DD.
- [8] CHEN W.Y., JANG Y., WANG J.D., HUANG W.N., CHANG C.C., MAO H.F., WANG Y.H., Wheelchair-related accidents: relationship with wheelchair-using behavior in active community wheelchair users, Archives of Physical Medicine and Rehabilitation, 2011, 92 (6), 892–898, DOI: 10.1016/j.apmr.2011.01.008.
- [9] CHÉNIER F., AISSAOUI R., Effect of wheelchair frame material on users’ mechanical work and transmitted vibration, BioMed. Res. Int., 2014, 609369, DOI: 10.1155/2014/609369.
- [10] CHUNG B.M., Dynamic response of wheelchair cushions, IFMBE Proc, 2009, 24, 47–50.
- [11] CHWALIK-PILSZYK G., DZIECHCIOWSKI Z., KROMKA-SZYDEK M., KOZIEŃ M.S., Experimental identification of the subjective reception of external stimuli during wheelchair driving, Open Engineering, 2021, 11 (1), 1141–1149, DOI: 10.1515/ eng-2021-0112.
- [12] CHWALIK-PILSZYK G., ZIEMIAŃSKI D., KOZIEŃ M.S., Experimental investigations on transmission of whole body vibration to the wheelchair user’s body, Open Engineering, 2022, 12 (1), 431–438, DOI: 10.1515/eng-2022-0044.
- [13] COOPER R.A., WOLF E., FITZGERALD S.G., BONINGER M.L., ULERICH R., AMMER W.A., Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension, Arch. Phys. Med. Rehabil., 2003, 84, 96–102, DOI: 10.1053/ apmr.2003.50069.
- [14] DIGIOVINE C.P., COOPER R.A., BONINGER M.L., Comparison of absorbed power to vertical acceleration when measuring whole-body vibration during wheelchair propulsion, Annu. Int. Conf. IEEE Eng. Med. Biol. Proc., 1999, 1, 610.
- [15] DIGIOVINE C.P., COOPER R.A., FITZGERALD S.G., BONINGER M.L., WOLF E.J., GUO S., Whole-body vibration during manual wheelchair propulsion with selected seat cushions and back supports, IEEE Trans. Neural. Syst. Rehabil. Eng., 2003, 11 (3), 311–322, DOI: 10.1109/TNSRE.2003.816872.
- [16] DIGIOVINE C.P., COOPER R.A., WOLF E., FITZGERALD S.G., BONINGER M.L., Analysis of whole-body vibration during manual wheelchair propulsion: A comparison of seat cushions and back supports for individuals without a disability, Assist. Technol., 2003, 15 (2), 129–144, DOI: 10.1080/ 10400435.2003.10131897.
- [17] DIGIOVINE C.P., COOPER R.A., WOLF E.J., HOSFIELD J., CORFMAN T.A., Analysis of vibration and comparison of four wheelchair cushions during manual wheelchair propulsion, Proc. Annu. RESNA Conf., 2000, 242–244.
- [18] DIGIOVINE C.P., KOONTZ A.M., BONINGER M.L., Advances in manual wheelchair technology, Top Spinal Cord. Inj. Rehabil., 2006, 11 (4), 1–14, DOI: 10.1310/67TW-L3UD-RUYG-7UKJ.
- [19] DUVALL J., COOPER R., SINAGRA E., STUCKEY D., BROWN J., PEARLMAN J., Development of surface roughness standards for pathways used by wheelchairs, Transp. Res. Rec., 2013, 149–156.
- [20] DZIECHCIOWSKI Z., KROMKA-SZYDEK M., Vibration transmitted on the human body during the patient’s ride in a wheelchair, Arch. Acoust., 2017, 42 (1), 137–148, DOI: 10.1515/ aoa-2017-0015.
- [21] DZIECHCIOWSKI Z., KROMKA-SZYDEK M., CHWALIK G., The influence of changing the road pavement and the method of using a wheelchair on the vibration perception in accordance with ISO2631, Technical Transactions, 2017, 114 (11), 169–181, DOI: 10.4467/2353737XCT.17.199.7428.
- [22] FERGUSON-PELL M., FERGUSON-PELL G., MOHAMMADI F., CALL E., Applying ISO 16840-2 standard to differentiate impact force dissipation characteristics of selection of commercial wheelchair cushions, J. Rehabil. Res. Dev., 2015, 52 (1), 41–52, DOI: 10.1682/JRRD.2014.04.0115.
- [23] GARCIA-MENDEZ Y., PEARLMAN J.L., BONINGER M.L., COOPER R.A., Health Risks of Vibration Exposure to Wheelchair Users in the Community, J. Spinal Cord. Med., 2013, 36 (4), 365–375, DOI: 10.1179/2045772313Y.0000000124.
- [24] GARCIA-MENDEZ Y., PEARLMAN J.L., COOPER R.A., BONINGER M.L., Dynamic stiffness and transmissibility of commercially available wheelchair cushions using a laboratory test method, J. Rehabil. Res. Dev., 2012, 49, 7–22, DOI: 10.1682/JRRD.2011.02.0023.
- [25] HASHIZUME T., KITAGAWA, H., YONEDA I., TAKAMI M., FUJISAWA S., SUEDA O., KAMATA M., Study on the Wheelchair User’s Body Vibration and Wheelchair Driving Torque When Wheelchair Is Ascending/Descending the Boundary Curb between Pavement and Roadway, Proceedings of the SICE Annual Conference, Tokyo, Japan, 2008, 1273–1276.
- [26] HE C., SHI P., Interface pressure reduction effects of wheelchair cushions in individuals with spinal cord injury: a rapid review, Disabil. Rehabil., 2022, 44 (6), 826–833, DOI: 10.1080/ 09638288.2020.1782487.
- [27] HISCHKE M., REISER R.F., Effect of rear wheel suspension on tilt-in-space wheelchair shock and vibration attenuation, PMR, 2018, 10 (10), 1040–1050, DOI: 10.1016/j.pmrj.2018.02.009.
- [28] ISO-2631-1: 2014. Mechanical Vibration and Shock. Part 1: Evaluation of Human Exposure to Whole Body Vibration, International Organization for Standardization, Geneva, Switzerland, 2014.
- [29] ISO 16840-3: 2014. Wheelchair Seating. Part 3: Determination of Static, Impact and Repetitive Load Strengths for Postural Support Devices, International Organization for Standardization, Geneva, Switzerland, 2014.
- [30] KAWAI K., MATSUOKA Y., Construction of a Vibration Simulation Model for the Transportation of WheelchairBound Passengers, SAE Technical Paper, 2000, 01–0645, DOI: 10.4271/2000-01-0645.
- [31] LAI C.C., TU YK., WANG T.G., HUANG YT., CHIEN K.L, Effects of resistance training, endurance training and wholebody vibration on lean body mass, muscle strength and physical performance in older people: a systematic review and network meta-analysis, Age Ageing, 2018, 47 (3), 367–373, DOI: 10.1093/ageing/afy009.
- [32] LARIVIERE O., CHADEFAUX D., SAURET CH., THOREUX P., Vibration transmission during manual wheelchair propulsion: A systematic review, Vibration, 2021, 4 (2), 444–481, DOI: 10.3390/vibration4020029.
- [33] LEVY A., SHOHAM N., KOPPLIN K., GEFEN A., The critical characteristics of a good wheelchair cushion, [in:] M. Romanelli, M. Clark, A. Gefen, G. Ciprandi (Eds.), Science and practice of pressure ulcer management, Springer, London, 2018.
- [34] MAEDA S., FUTATSUKA M., YONESAKI J., IKEDA M., Relationship between Questionnaire Survey Results of Vibration Complaints of Wheelchair Users and Vibration Transmissibility of Manual Wheelchair, Environ. Health Prev. Med., 2003, 8 (3), 82–89, DOI: 10.1007/BF02897920.
- [35] MEHTA C.R., TEWARKI V.K., Damping characteristics of seat cushion materials for tractor ride comfort, Journal of Terramechanics, 2010, 47 (6), 401–406, DOI: 10.1016/ j.jterra.2009.11.001.
- [36] REHN B., LIDSTRÖM J., SKOGLUND J., LINDSTRÖM B., Effects on leg muscular performance from whole-body vibration exercise: A systematic review, Scand. J. Med. Sci. Sports, 2007, 17 (1), 2–11, DOI: 10.1111/j.1600-0838.2006.00578.x.
- [37] REQUEJO P.S., MANEEKOBKUNWONG S., MCNITT-GRAY J., ADKINS R., WATERS R., Influence of hand-rim wheelchairs with rear suspension on seat forces and head acceleration during curb descent landings, J. Rehabil. Med. 2009, 41 (6), 459–466, DOI: 10.2340/16501977-0360.
- [38] SEIDEL H., HEIDE R., Long-term effects of whole-body vibration: a critical survey of the literature, Int. Arch. Occup. Environ. Health, 1986, 58 (1), 1–26, DOI: 10.1007/BF00378536.
- [39] SKENDRAOUI N., BOGARD F., MURER S., BEAUMONT F., ABBES B., POLIDORI G., NOLOT J.B., ERRE D., ODOF S., TAIAR R., Experimental investigations and finite element modelling of the vibratory comportment of a manual wheelchair, [in:] Proceedings of the 1st International Conference on Human Systems Engineering and Design (IHSED2018): Future Trends and Applications, CHUUniversité de Reims Champagne-Ardenne, France, 2018, 876, 682–688.
- [40] VANSICKLE D.P., COOPER R.A., BONINGER M.L., DIGIOVINE C.P., Analysis of vibrations induced during wheelchair propulsion, J. Rehabil. Res. Dev., 2001, 38 (4), 409–421.
- [41] VERSCHUEREN S.M., ROELANTS M., DELECLUSE C., SWINNEN S., VANDERSCHUEREN D., BOONEN S., Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study, J. Bone Miner. Res., 2004, 19 (3), 352–359, DOI: 0.1359/JBMR.03011245.
- [42] WOLF E., PEARLMAN J., COOPER R.A., FITZGERALD S.G., KELLEHER A., COLLINS D.M., BONINGER M.L., COOPER R., Vibration Exposure of Individuals Using Wheelchairs over Sidewalk Surfaces, Disabil. Rehabil., 2005, 27 (23): 1443–1449, DOI: 10.1080/09638280500264709.
- [43] ZADOŃ H., NOWAKOWSKA-LIPIEC K., MICHNIK R., A sitting or standing position-which one exerts more loads on the musculoskeletal system of the lumbar spine? Comparative tests based on the methods of mathematical modelling, Acta Bioeng. Biomech., 2021, 23 (1), 113–120, DOI: 10.37190/ ABB-01762-2020-01.
- [44] ZANATTA M., AMARALB F.G., VIDOR G., The role of wholebody vibration in back pain: A cross-sectional study with agricultural pilots, International Journal of Industrial Ergonomics, 2019, 74, 102872, DOI: 10.1016/j.ergon.2019.102872.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d4bff76-b856-4d94-993c-9ef2be324759