PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and spectroscopic interpretations of Co(II), Ni(II) and Cu(II) decxycholate complexes with molecular docking of COVId-19 protease

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Co(II), Ni(II) and Cu(II) decxycholate complexes are interesting due to their biologically active and deliberate interest in the research due to their coordination properties. The microanalytical ‘elemental analysis’, molar conductivity, (infrared and Raman) spectroscopy, thermal analyses (TGA/DSC), UV-vis spectra, and ESR for copper(II) decxycholate complex investigations were performed in the structural assignments of Co(II), Ni(II) and Cu(II) decxycholate complexes. Reaction of the sodium deoxycholate ligand (C24H39O4Na) with three transition metal ions form the complexes of formulae, [M(C24H39O4)2(H2O)2] . xH2O where M = Co(II), Ni(II) and Cu(II) where x = 2 for Cu(II) and x = 4 in case of M = Co(II) or Ni(II) metal ions. The FTIR spectra of the complexes show that decxycholate molecule is present as bidentate ligand. Molecular docking utilizing to additionally examine the interaction of COVID-19 (6LU7) with different complexes of deoxycholic acid with Co(II), Ni(II) and Cu(II). Furthermore, in the case of Co(II) deoxycholate complex, the probe is surrounded by amino residues Met235, Pro241, Glu240, Pro108, Gln110, Phe294, and Ile152. The probe molecule of Ni(II) deoxycholate complex is sited close to amino acids Tyr126, Tyr239, Leu287, Leu272, and Lys137. For, Cu(II) deoxycholate complex, the residues of amino acids comprise of Pro132, Pro108, Gln110, Gly109, Ile200, Asn203, Val202, His246, Pro293 and Tyr154. The binding energy was determined from the docking reads for Co(II)–6LU7, Ni(II)–6LU7 and Cu(II)–6LU7 deoxycholate compounds were found to be −446.99, −500.52, −398.13 kcal mol−1 individually.
Słowa kluczowe
Rocznik
Strony
54--59
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Faculty of Education, Shaqra University, Al Muzahimiyah, Shaqra, Riyadh Province, P.O. Box 205, Zip Code 11972, Kingdom Saudi Arabia
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
  • Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, KSA
Bibliografia
  • 1. Lide, D.R. (1998). Handbook of Chem. and Physics. (87 ed.). Boca Raton, FL: CRC Press. p. 1287.
  • 2. Streuli, H. (1992). SLMB – Schweizer Lebensmittelbuch, chapter 58, 4/3.
  • 3. Neugebauer, J.M. (1990). “Detergents: An Overview” in M.P. Deutscher, Guide to Protein Purification (Methods in Enzymology Vol. 182), Academic Press, San Diego. DOI: 10.1016/0076-6879(90)82020-3.
  • 4. Duncan, D. & Rotunda, A.M. (2011). Injectable therapies for localized fat loss: state of the art. Clin. Plast Surg., 38(3), 489–501, DOI: 10.1016/j.cps.2011.02.005.
  • 5. Kim, J.B., Lee, B.W., Yun, H.J. & Kwon, Y.G. (2000). 193-nm Photoresists Based on Norbornene Copolymers with Derivatives of Bile Acid. Chem. Lett., 29(4), 414–415. DOI: 10.1246/cl.2000.414.
  • 6. Vlček, B. (1972). Potentiation of the immune response with DCA (Czech). Prakt. Lekar., 52, 326–30.
  • 7. Chyle, M. & Chyle, P. (1982). Regulation of the immune response with DCA (Czech, engl. summary). Sbornik lek., 84, 212–218.
  • 8. World Health Organisation International Programme on Chemical Safety, Concise International Chemical Assessment Document No. 26, Geneva, (2000).
  • 9. Chohan, Z.H. & Sherazi, S.K.A. (1997). Synthesis, characterization and role of anions (nitrate, sulphate, oxalate and acetate) in the biological activity of hydrazine derived compounds and their metal chelates. Metal-Based Drugs, 4, 327.
  • 10. Knapp, A.R., Panzner, M.J., Medvetz, D.A., Wright, B.D., Tessier, C.A. & Youngs, W.J. (2010). Synthesis and antimicro-bial studies of silver N-heterocyclic carbene complexes bearing a methyl benzoate substituent. Inorg. Chim. Acta, 364(1), 125–131. DOI: 10.1016/j.ica.2010.08.008.
  • 11. Rardin, R.L., Tolman, W.B. & Lippard, S.J. (1991). Monodentate carboxylate complexes and the carboxylate shift: implications for polymetalloprotein structure and function. New J. Chem., 15(6), 417–430.
  • 12. Holm, R.H., Kennepohl, P. & Solomon, E.I. (1996). Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev., 96(7), 2239–2314. DOI: 10.1021/cr9500390.
  • 13. Busch, D.H. & Stephenson, N.A. (1990). Molecular organization, portal to supramolecular chemistry: Structural analysis of the factors associated with molecular organization in coordination and inclusion chemistry, including the coordination template effect. Coord. Chem. Rev., 100, 119–154. DOI:10.1016/0010-8545(90)85007-F.
  • 14. Rosenberg, B., Vancamp, L., Trosko, J.E. & Mansour, V.H. (1969). Platinum Compounds: a New Class of Potent Antitumour Agents. Nature, 222, 385–386. DOI: 10.1038/222385a0.
  • 15. Canali, L. & Sherrington, D.C. (1999). Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev., 28, 85–93. DOI: 10.1039/A806483K.
  • 16. Tejam, A.B. & Thakkar, N. (1997). Extractive spectrophotometric determination of Co(II) at trace level using l-phenyl 1,2-propanedione dioxime. Indian J. Chem., 36(A), 1008–1009.
  • 17. Bhai , S. & Ganguly, B. (2019). Role of backbones on the interaction of metal ions with deoxyribonucleic acid and peptide nucleic acid: A DFT study. J. Mol. Graph. Model., 93, 107445. DOI: 10.1016/j.jmgm.2019.107445.
  • 18. Murphy, J.M., Powell, B.A. & Brumaghim, J.L. (2020). Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord. Chem. Rev., 412, 213253. DOI: 10.1016/j.ccr.2020.213253.
  • 19. Deacon, G.B. & Phillips, R.J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev., 33, 227–250. DOI: 10.1016/S0010-8545(00)80455-5.
  • 20. Khan, I.M., Alam, K., Alam, M.J. & Ahmad, M. (2019). Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies. New J. Chem., 43, 9039–9051. DOI: 10.1039/C9NJ00332K.
  • 21. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.
  • 22. Lever, A.B.P. (1997). Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam.
  • 23. Craig, G.A., Sarkar, A., Woodall, C.H., Hay, M.A., Marriot, K.E., Kamenev, K.V., Moggach, S.A., Brechin, E.K., Parsons, S., Rajaraman, G. & Murrie, M. (2018). Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(II) under high pressure. Chem. Sci., 9, 1551–1559. DOI: 10.1039/C7SC04460G.
  • 24. Omaka, N.O., Ekennia, A.C., Njoku, N.N. & Onwudiwe, D.C. (2018). Nickel(II) and copper(II) complexes of 2,2’-bibenzo[d]thiazole: Synthesis, characterisation and biological studies. App. Organomet. Chem., 32(4), e4241. DOI: 10.1002/aoc.4241.
  • 25. Yernale, N.G. & Mruthyunjayaswamy, B.H.M. (2014). Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety. Bioinorg. Chem. Appl., 2014, Article ID 314963, 17. DOI: 10.1155/2014/314963.
  • 26. Zhang, F., Zhang, J., Tong, C.L., Chen, Y.D., Zhuang, S.L. & Liu, W.P. (2013). Molecular interactions of benzophenone UV filters with human serum albumin revealed by spectroscopic techniques and molecular modeling. J. Hazard. Mater., 263, 618–626. DOI: 10.1016/j.jhazmat.2013.10.024.
  • 27. Elgawish, M.S., Kishikawa, N., Helal, M.A., Ohyama, K. & Kuroda, N. (2015). Molecular modeling and spectroscopic study of quinone–protein adducts: insight into toxicity, selectivity, and reversibility. Toxicol. Res., 4, 843–847. DOI: 10.1039/c5tx00098j.
  • 28. Mumit, M.A., Pal, T.K., Alam, M.A., Islam, M.A., Paul, S. & Sheikh, M.C. (2020). DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxy-phenylmethylene)hydrazinecarbodithioate. J. Mol. Struct., 1220, 128715. DOI: 10.1016/j.molstruc.2020.128715
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d48911c-bec6-4909-a07c-28b12d3b5091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.