Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, the fractional-order cubic nonlinear Schrödinger equation is considered. The Schrödinger equation with time and space fractional derivative is studied at the same time. Different types of travelling wave solutions including the kink solution, soliton solution, periodic solution, and singular solution for the mentioned equation are obtained by using the Jacobi elliptic functions expansion method. It is shown that the solutions turn into the exact solutions when the fractional orders go to 1. This method can be relied on gaining the solutions to time or space fractional order partial differential equations as well as ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.
Rocznik
Tom
Strony
29--41
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Sakarya University, Faculty of Arts and Sciences, Department of Mathematics Sakarya, Turkey
autor
- Sakarya University, Faculty of Arts and Sciences, Department of Mathematics Sakarya, Turkey
Bibliografia
- [1] Weitzner, H., & Zaslavskyn, G.M. (2003). Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simulat., 8, 273-281.
- [2] Kilbas, A., Srivastava, H., & Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier.
- [3] Baleanu, D., Golmankhaneh, A.K., & Baleanu, M.C. (2009). Fractional electromagnetic equations using fractional forms. International Journal of Theoretical Physics, 48, 3114-3123.
- [4] Wazwaz, A. (2007). The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Applied Mathematics and Computation, 184, 1002-1014.
- [5] Gözükızıl, O.F., & Akcagil, S. (2013). The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions. Advances in Difference Equations, DOI: 10.1186/1687-1847- 2013-143.
- [6] He, J., & Zhang, L. (2008). Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method. Physical Letters A, 371, 1044-1047.
- [7] Wang, M., Li, X., & Zahng, J. (2008). The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physical Letters A, 372, 417-423.
- [8] Akcagil, S., Aydemir, T., & Gözükızıl, O.F. (2015). Comparison between the new (G’/G) expansion method and the extended homogeneous balance method. New Trends in Mathematical Sciences, 3, 223-236.
- [9] Gündoğdu, H., & Gözükızıl, O.F. (2017). Solving nonlinear partial differential equations by using Adomian decomposition method, modified decomposition method and Laplace decomposition method. MANAS Journal of Engineering, 5, 1-13
- [10] Gündoğdu, H., & Gözükızıl, O.F. (2017). Obtaining the solution of Benney-Luke Equation by Laplace and adomian decomposition methods. Sakarya University Journal of Science, 21, 1524-1528.
- [11] Alvaro, H.S. (2012). Solving nonlinear partial differential equations by the sn-ns method. Abstr. Appl. Analysis, 25, 1-25.
- [12] Gündoğdu, H., & Gözükızıl, O.F. (2021). On the new type of solutions to Benney-Luke equation. BSPM – Sociedade Paranaense de Matemática, DOI: 10.5269/bspm.41244.
- [13] Gündoğdu, H., & Gözükızıl, O.F. (2018). On different kinds of solutions to simplified modified form of the Camassa-Holm equation. Journal of Applied Mathematics and Computational Mechanics, 17, 1-10.
- [14] Laskin, N. (2002). Fractional Schrödinger equation. Phys. Rev., 66, 056108.
- [15] Biswas, A. (2012). Soliton solutions of the perturbed resonant nonlinear dispersive Schrödinger’s equation with full nonlinearity by a semi-inverse variational principle. Quantum Phys. Lett., 1, 79-84.
- [16] Eslami, M., Mirzazadeh, M., & Biswas, A. (2013). Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time-dependent coefficients by simplest equation approach. J. Mod. Opt., 60, 1627-1636.
- [17] Mirzazadeh, M., Eslami, M., Milovic, D., & Biswas, A. (2014). Topological solitons of resonant nonlinear Schrodinger’s equation with dual-power law nonlinearity using (G’/G)-expansion ¨ technique. Optik, 125, 5480-5489.
- [18] Inc, M., & Ates, E. (2017). Bright, dark and singular optical solitons in a power-law media with fourth-order dispersion. Opt. Quantum Electron., DOI: 10.1007/s11082-017-1150-0.
- [19] Akbulut, A., & Kaplan, M. (2018). Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math Appl., 75, 876-882.
- [20] Owyed, S., Abdou, M.A., Abdel-Aty, A., & Dutta, H. (2019). Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. AIMS Mathematics, 5, 2057-2070.
- [21] Neirameh, A., Eslami, M., & Mehdipoor M. (2021). New Types of Soliton Solutions for Space-time Fractional Cubic Nonlinear Schrodinger Equation. Bol. Soc. Paran. Mat., 39, 121-131. [
- 22] Laskin, N. (2000). Fractional quantum mechanics. Phys. Rev., 62, 3135-3145.
- [23] Laskin, N. (2000). Fractional quantum mechanics and Levy path integrals. Phys. Lett. A., 268-298.
- [24] Laskin, N. (2000). Fractals and quantum mechanics. Chaos, 10, 780.
- [25] Kilbas, A.A., Srivastava H.M., & Trujillo J.J. (2006). Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier.
- [26] Debnath L. (2003). Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci., 54, 3413-3442.
- [27] Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d4715c7-2916-4a9f-9a34-ad14df562fd6