PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational and Experimental Investigation of Inert Gas Flow Field in Direct Metal Laser Melting Printer Build Chambe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing methods are becoming more and more popular in today’s production market. These methods became a useful and flexible alternative to traditional manufacturing approach. One of the most popular methods in this family is Direct Metal Laser Melting. It can achieve high quality prints, however, numerous parameters need to be established, to achieve a good quality product. One of the aspects of printing process is inert gas flow. The goal of presented study is to quantitatively assess inert gas flow field using both experimental and numerical methods. Flow field parameters have been measured with anemometry and Particle Image Velocimetry. Additionally Computational Fluid Dynamics tools were used to investigate flow phenomena occurring inside the build chamber. PIV measurements give good insight into the flow field, but they are costly and require significant time for preparation. For this reason, CFD analysis is widely used as a design tool, giving reasonable turnaround time. In addition, every design tool to be reliable need to be validated against test data. In this study the team was able to collect both experimental and numerical data and finally conduct the validation. Work allowed to determine the most suitable approach for predictions in given problem. Different turbulence models have been tested. Simulation results were validated against collected experimental data.
Twórcy
  • GENERAL ELECTRIC AEROSPACE POLAND Sp. z o.o. Al. Krakowska 110/114 02-256 Warszawa, Polska
  • Sieć Badawcza Łukasiewicz – Instytut Lotnictwa, al. Krakowska 110/114 02-256 Warszawa, Polska
autor
  • GENERAL ELECTRIC AEROSPACE POLAND Sp. z o.o. Al. Krakowska 110/114 02-256 Warszawa, Polska
  • Sieć Badawcza Łukasiewicz – Instytut Lotnictwa, al. Krakowska 110/114 02-256 Warszawa, Polska
  • Sieć Badawcza Łukasiewicz – Instytut Lotnictwa, al. Krakowska 110/114 02-256 Warszawa, Polska
  • GENERAL ELECTRIC AEROSPACE POLAND Sp. z o.o. Al. Krakowska 110/114 02-256 Warszawa, Polska
  • GENERAL ELECTRIC AEROSPACE POLAND Sp. z o.o. Al. Krakowska 110/114 02-256 Warszawa, Polska
Bibliografia
  • 1. Cobbinah, P.V.; Nzeukou, R.A.; Onawale, O.T.; Matizamhuka, W.R. Laser Powder Bed Fusion of Potential Superalloys: A Review. Metals, 2021, 11, 58. http://doi.org/10.3390/met11010058
  • 2. Kozak J., Zakrzewski T., Witt M., Dębowska-Wąsak, M., Selected Problems of Additive Manuacturing Using SLS/SLM Processes. Transactions on Aerospace Research, 1, 2021, 24–44.
  • 3. Ladewig A., Schlick G., Fisser M., Schulze V., Glatzel U., Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Additive Manufacturing, 10, 2016, 1-9.
  • 4. Reijonen J., Revuelta A., Ruusuvuori K., Puukko P., On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed Fusion additive manufacturing. Additive Manufacturing, 32, 2020, 101030.
  • 5. Ferrar B., Mullen L., Jones E., Stamp R., Sutcliffe C. J. Gas flow effects on selective laser melting (SLM) manufacturing performance. Journal of Materials Processing Technology, 212(2), 2012, 355-364.
  • 6. Nadimpalli P., Christiansen T., Andersen S., Kjer M., Mishin O., Zhang Y., Influence of shielding gas flow on the uniformity of additively manufactured martensitic stainless steel, IOP Conf. Series: Materials Science and Engineering, 2022.
  • 7. Anwar A., Pham Q., Effect of inert gas flow velocity and unidirectional scanning on the formation and accumulation of spattered powder during selective laser melting. Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing, 2016.
  • 8. Shen H., Rometsch P., Wu X., Huang A., Influence of gas flow speed on laser plume attenuation and powder bed particle pickup in laser powder bed fusion. JOM, 72(3), 2020.
  • 9. Roidl B., Fauner T., Continuous Improvement in Gas Flow Design. Whitepaper, https://go.additive. ge.com/rs/706-JIU-273/images/GE%20Additive_ Gas%20Flow_WP_US_EN-high%20res.pdf, GE Additive, 2022.
  • 10. Philo A., Sutcliffe C., Sillars S., Sienz J., Brown S., Lavery N., Study into the effects of gas flow inlet design of the renishaw Am250 laser powder bed fusion machine using computational modelling. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1203-1219.
  • 11. Philo A., Lavery N., Brown S., Cherry J., Sienz J., Joannou J., Sutcliffe C., Comparison and validation of gas flow models in a powder bed selective laser melting process. In: Proc. of the 23rd UK Conference of the Association for Computational Mechanics in Engineering, 2015, 189-195.
  • 12. Chen Y., Vastola G., Zhang Y., Optimization of inert gas flow inside laser powder bed fusion chamber with computational fluid dynamics. In: Proc.of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference. Solid Freeform Fabrication, 2018.
  • 13. Weaver J., Schlenoff A., Deisenroth D., Moylan S., Inert gas flow speed measurements in laser powder bed fusion additive manufacturing. Advanced Manufacturing Series, 2021.
  • 14. Chen X., Wang W., The applications of particle image velocimetry (PIV) to experimentally observe the flow behaviors inside the selective laser melting (SLM) working chamber. Flow Measurement and Instrumentation, 73, 2020: 101738.
  • 15. Schniedenharn M., Wiedemann F., Schleifenbaum J., Visualization of the shielding gas flow in SLM machines by space-resolved thermal anemometry. Rapid Prototyping Journal, 24/8, 2018: 1296–1304.
  • 16. Chen X., Tzeng S., Wang W., Numerical and experimental observations of the flow field inside a selective laser melting (SLM) chamber through computational fluid dynamics (CFD) and particle image velocimetry (PIV). Powder Technology, 362, 2020, 450-461,
  • 17. Chien C., Le T., Lin Z., Lo Y., Numerical and experimental investigation into gas flow field and spattering phenomena in laser powder bed Fusion processing of Inconel 718. Materials & Design, 210, 2021, 110-107.
  • 18. Elsinga G.E., Scarano F., Wieneke B., van Oudheusden B.W., Tomographic particle image velocimetry. In: 6th Int. Symp. Part. Image Velocim., 1–12, 2005. Available: http://www.springerlink. com/index/17008530406263N2.pdf.
  • 19. Kähler C.J. and Kompenhans J., Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids, 29(7), S070–S077, 2000, doi: 10.1007/s003480070009.
  • 20. Scarano F., Tomographic PIV: Principles and practice. Meas. Sci. Technol., vol. 24, no. 1, 2013, doi: 10.1088/0957-0233/24/1/012001.
  • 21. Czyż Z., Karpiński P., Stryczniewicz W., Measurement of the flow field generated by multicopter propellers. Sensors (Switzerland), 20(19), 2020,1–22, doi: 10.3390/s20195537.
  • 22. Czyż Z. and Stryczniewicz W., Investigation of aerodynamic interference in a multirotor by PIV method. Adv. Sci. Technol. Res. J., 12(1), 2018, 106–114, doi: 10.12913/22998624/86475.
  • 23. Laskin S., Submerged aerosol unit. AEC Project Quarterly Report UR-38, 1948.
  • 24. Raffel M. et al., Particle Image Velocimetry: A Practical Guide. Springer, 2007.
  • 25. Theunissen R., Scarano F., Riethmuller M., An adaptive sampling and windowing interrogation method in PIV. Meas. Sci. Technol., 18, 2007, 275–287.
  • 26. Frant M., Kozakiewicz A., Kachel S., Analysis of impact of gust angle and velocity on the position of stagnation point. Adv. Sci. Technol. Res. J. 2020; 14(4): 49–57.
  • 27. Ansorge R., Mathematical Models of Fluid Dynamics. Willey-VCH GmbH &Co. 2003.
  • 28. Cokljat D., Caradi D., Link G., Lechner R., Menter F., Embedded LES methodology for general-purpose CFD solvers. In: Proc. 6th Int. Symp. Turbulence and Shear Flow Phenomena, 2009, 1191-1196.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d3d3163-dacb-4dd6-b2a2-39d04d70b24f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.