PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On axisymmetrical boundary problem of unsteady motion of micropolar fluid in the half-space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is developing an exact solution for the problem of axisymmetrical flow of unsteady motion of micropolar fluid in the half-space when the shear stresses are given on the boundary. The Laplace-Hankel transform technique is used to solve this problem. Some physical quantities such as velocities, pressure and microrotations are obtained and illustrated numerically.
Rocznik
Strony
51--62
Opis fizyczny
Bibliogr. 14 poz., wykr., tab.
Twórcy
  • Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
  • Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
Bibliografia
  • [1] A.C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. 16, 1-18 (1966).
  • [2] A.C. Eringen, Microcontinuum Field Theories I and II, Springer-Verlag, New York, 1998
  • [3] I.H. El-Sirafy, “Two-dimensional flow of nonstationary micropolar fluid in the half-plane for which the shear stresses are given on the boundary”, J. Computational and Applied Mathematics 12 (13), 271-276 (1985).
  • [4] I.H. El-Sirafy and A.M. Abdel-Moneim, “Two-dimensional unsteady motion of micropolar fluid in the half-plane when the velocity are given on the boundary”, IJRRAS 6 (3), 302-309 (2011).
  • [5] R.S. Gorla, M.A. Mansour, and A.A. Mohammedien, “Combined convection in an axisymmetric stagnation flow of micropolar fluid”, Int. J. Num. Meth. Heat Fluid Flow 6 (4), 47-55 (1996).
  • [6] H. Bateman, Tables of Integral Transforms, vol. 1, McGraw- Hill, New York, 1954.
  • [7] M.S. Faltas, H.H. Sherief, and E.A. Ashmawy, “Interaction of two spherical particles rotating in a micropolar fluid”, Mathematical and Computer Modelling 56 (9-10), 229-239 (2012).
  • [8] Y.Y. Lok, N. Amin, and I. Pop, “Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface”, Int. J. Thermal Sciences 45, 1149-1157 (2006).
  • [9] K.A. Kline and S.J. Allen, “Nonsteady flows of fluids with microstructure”, Physics of Fluids 13, 263-283 (1970).
  • [10] G. Łukaszewicz, Micropolar Fluids, Theory and Application, Birkhouser, Berlin, 1999.
  • [11] G. Ahmadi, “Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite flat plate”, Int. J. Engineering and Science 14, 639-646 (1976).
  • [12] S.J. Allen and K.A. Kline, “Lubrication theory for micropolar fluids”, Trans. A.S.M.E. J. Appl. Mech. 38, 646-650 (1971).
  • [13] D.A. Rees and A.P. Bassom, “The Blasius boundary layer flow of a micropolar fluid”, Int. J. Engineering and Science 34, 113-124 (1996).
  • [14] A. Kucaba-Piętal, “Microchannels flow modelling with the micropolar fluid theory”, Bul. Pol. Ac.: Tech. 52 (3), 209-214 (2004).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d379e84-af3c-4419-879b-6dec36e9d791
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.