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Congestive heart failure (CHF) is a prevalent, expensive to treat, and dangerous disease in
which the pumping capacity of the heart muscle is reduced due to injury or stress. It causes
major medical problems in humans and contribute to many diseases, thus increasing the
mortality rate. In a world with a growing population, there is a need for more precise and
simpler approaches to detect such conditions, which can prevent many diseases and lead to
a lower mortality rate. The main goal here is to use electrocardiomatrix (ECM) approach
to perform the task of detecting CHF. It is detected quickly and accurately with this
approach, as ECM converts 2D electrocardiogram (ECG) data into a 3D-colored matrix.
The approach is tested using ECG readings from the Beth Israel Deaconess Medical Center
(BIDMC) CHF Database on the Internet (Physionet.org). The ECM outcomes of are then
compared to manual readings of ECG data. The ECM results achieved the accuracy of
96.89%, the sensitivity of 97.53%, the precision of 99.1%, the F1-score of 97.76%, and the
specificity of 96.02% for CHF. This research shows that the ECM approach is a good way
for machines and practitioners to interpret long-term ECG readings while maintaining
accuracy.
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1. Introduction

Cardiac arrest is a severe and challenging clinical condition caused by any
physiological or pathological heart illness that impairs blood ventricular load-
ing or blood discharge into the circulatory system to meet the demands of the
human body [1]. CHF is caused by the heart ventricles not being able to trans-
port enough blood to the body [2]. Blood and some other body fluids eventually
collect in the lungs, liver, abdomen, and other inferior body organs, resulting
in congestion [3]. ECG abnormalities that might induce CHF include “prema-
ture atrial contraction (PAC), supraventricular premature beats (SVPB), pre-



292 B.M. Rao, A. Kumar

mature ventricular contraction (PVC), and R on T premature ventricular con-
traction (RTPVC)” [4, 5]. Manual annotations and machine algorithms make it
difficult to identify all of these issues, and another issue is to accurately detect
“PAC, SVPB, PVC, and RTPVC” [6]. Traditional approaches for quantifying
various heart rate variability (HRV) signals using linear methods have shown
that a reduction in variability is linked to an increase in heart disease mortality.
However, there are several instances where HRV data cannot be analyzed using
linear techniques [7].

The paper is organized as follows, Sec. 2 presents related work, and Sec. 3 pro-
vides ECG data descriptions. Section 4 describes the methodology and Sec. 5
presents the results and discussion. Section 6 provides the conclusion.

2. Related work

In recent decades, researchers have developed and used a variety of tech-
niques to detect CHF, including the multiscale entropy metrics (MSE) and mul-
tiscale normalized corrected Shannon entropy (MNCSE) using inter-beat-interval
(IBI) statistics extracted from ECG signals [8]. An IBI’s dynamic symbol and
a wavelet-based soft decision technique for classifying and detecting non-healthy
subjects by combining classical HRV indicators with CHF was presented in [10].

Yu and Lee [11] presented a shared database that was primarily used to track
heart disease symptoms. For the CHF test, Pecchia et al. [12] offered short-term
HRV measures combined with a very simple threshold-based classification. Sym-
bolic statistical detection has been studied by Aziz et al. [9] to distinguish nor-
mal patients from those with circulatory heart disease. Altan et al. [13] used
the Hilbert–Huang transform (HHT) and a multilayer perceptron neural net-
work (MLPNN) to capture symptoms from IBI statistics, and classify patients
into healthy, CHF, and coronary artery disease (CAD) subjects. The latter ones
were CAD and normal subjects among no-CHF subjects. Choudhary et al. [14]
proposed a classified horizontal visibility entropy to distinguish healthy, CHF,
and cardiac arrhythmia subjects.

Recently, Isler et al. [15] have applied a multi-stage classifier of CHF-based
short-term heart rate variables. Narin et al. [16] concluded that short-term HRV
approach predicts the onset of paroxysmal atrial fibrillation. The researchers [17]
used irregularity in very short ECG signals to detect successful defibrillation in
cardiac arrhythmia-ventricular fibrillation (VF) patients. The ranking of mul-
timodal characteristics collected from CHF and normal sinus rhythm (NSR)
patients was proposed by Hussian et al. [33].

Yoon et al. [18] looked at three statistical models for automatic detection
of AF and CHF based on RRI time series. Empirical receiver operative charac-
teristics (EROC) values were used to classify hierarchical features into one to
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five groups. Instead of utilizing all multimodal characteristics, only high ranked
features should be used to diagnose and distinguish CHF and NSR patients [33].

CHF has become one of the leading causes of hospitalization among the el-
derly [19]. In comparison to other heart illnesses, CHF patients (adults more than
65 years of age) were readmitted to the hospital roughly 50% of the time after
discharge [20]. Masetic and Subasi divided their research into two phases: feature
extraction and classification. During the feature extraction step, the autoregres-
sive (AR) Burg approach was utilized [21]. CHF becomes more prevalent as peo-
ple get older [21, 22] and with the use of an ECG, many computerized approaches
have been employed to identify CHF. Tripathy et al. [22] proposed utilizing the
Stockwell (S) – transform and frequency division to examine the time-frequency
sub-band matrices using ECG data to build a classifier-based CHF automated
detection system. Kumar et al. [23] suggested an automated technique for di-
agnosing CHF using heart rate variability (HRV) data. In their investigation,
the flexible analytic wavelet transform was applied. Mahajan et al. [24] reported
a probabilistic symbol pattern recognition (PSPR) approach for recognizing CHF
patients based on their cardiac inter-beat intervals. A CHF detection ensemble
technique based on deep neural networks and short-term HRV data was pro-
posed by Wang et al. [25]. All of these solutions were either time-intensive or
could be utilized for data that was only available for a short period. Acharya
et al. [26] proposed a CNN-based CHF detection method that could classify the
CHF using one raw heartbeat only, and the accuracy indicated in this method
was 98,97%.

Recently, a new approach called ECM has been established for analyzing ECG
signals [27]. ECM displays the same ECG data in a 3D matrix format, making
it easier to see abnormalities such as atrial fibrillation (AF). Lee et al. [28] used
the ECM method to diagnose atrial fibrillation (AFIB) and atrial flutter (AFL)
in individuals. The online MIT-BIH AFIB database’s ECG signals are evaluated
using ECM (Physionet). This monitoring method does a one-sided examination
of time-dependent heart rate changes and cardiac arrhythmia frequency, ex-
tracting all of the characteristics of cardiac electrical impulses consistently using
raw ECG data. Then, the ECM-based results were compared with annotations
produced by a doctor based on an ECG. According to data, labeled AF and
AFL via PhysioNet and ECM are accepted in more than 99% of cases. Brown
et al. [29] investigated the feasibility, reliability, and usefulness of unit telemetry
data using ECM technology, and ECM shows telemetry data in a 3D matrix,
making P-wave analysis more precise and efficient. ECG data is presented by
ECM in a 3D graphical form, which makes it easier to spot irregularities. The
2 or 3 P-QRS-T pulses are shown on the y-axis in succession, while the x-axis
shows heartbeat counts or lost time, and the z-axis shows the strength of the
pulse signal. This monitoring system converts raw ECG data into a simplified
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format that allows for easy study of time-dependent heart rate variations and
the frequency of cardiac arrhythmias [29].

This study uses ECM technology to effectively examine the long duration of
ECG signals. The ECG signal is displayed in a three-dimensional matrix format
by ECM, making it easy to see irregularities. On the axis, 2 or 3 consecutive
P-QRS-T-waves are shown for the heart rate numbers or laps at the cardiac
signal amplitude on the x-axis and z-axis. By facilitating the evaluation of heart
electrical impulses from raw ECG data, this monitoring system enables speedy
evaluation of very short heart rate changes and the risk of cardiovascular illness.
This study’s objective is to test the proposed approach on the BIDMC-CHF
dataset and demonstrate how to accurately evaluate huge amounts of data. There
are four critical beats that CHF produces and they areas follows:

1. Premature atrial contractions (PACs) are extra heartbeats. The atria, or
upper chambers of the heart, are impacted by this disease. PACs occur
earlier than predicted, and the P-wave shape differs somewhat. In this
situation, the P-R interval appears to be normal, but the QRS complex is
narrow.

2. Supraventricular premature beats (SVPBs) are atrial contractions induced
by ectopic beats rather than the sinoatrial node. Regressive conduction
causes these contractions to happen inside the atria in the atrioventricular
nucleus. Both in the II and V1-lead ECG measurements, the contrast be-
tween the topologies of the typical sinus P-wave and the ectopic P-wave is
obvious. An ectopic P-wave is overlaid over a T-wave in the case of a V1
lead.

3. Premature ventricular contractions (PVCs) are abnormal heart rates that
start in the lower pumping chambers of the heart, and the ventricles and
disrupt the heart’s regular rhythm. As shown, there is no P-wave before the
PVC case. As a result, in this scenario, the P-R interval is unimportant.
With a QRS of at least 0.12 s and frequentcy of 0.14 s or even more, PVC
has a large and irregular QRS complex. Except where PVCs interfere, the
beat is regular. If R-R durations are measured in this situation, there will
be a compensating delay since there will be exactly two cycles between
both the R peak before the PVC and the R peak after the PVC.

4. When an ectopic beat is placed over the T-wave of a preceding beat, the
“R-on-T phenomenon” occurs. When the T-wave of the preceding beat
reaches its peak. the R-wave begins [30].

This study considers the detailed elements of the ECG short signals exam-
ined manually. Beat-by-beat assessment of ECG data has become a difficult
task that requires more ECG signals to be increased. It is necessary to develop
a novel method that simultaneously analyses ECG signals’ micro and macro fea-
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tures. The ECM methodology is required to enhance cardiac disease diagnosis
since it offers improved specificity and sensitivity for cardiac disease detection
compared to traditional and robotic arrhythmia identification techniques. Car-
diac telemetry is used in the inpatient ischemic stroke/transient ischemic attack
test to look for AF and CHF. However, there are certain methods available to
assist doctors in analyzing large amounts of telemetry data. Brown et al. [29]
have developed ECM, a new approach to assess tested electrocardiographic sig-
nals for their feasibility, authenticity, and usability on stroke unit telemetry
data. ECM delivers a 3-dimensional matrix of telemetry data, improving ac-
curacy and speeding up P-wave processing. One of the most commonly used
techniques for the non-invasive diagnosis of cardiovascular disorders and fun-
damental cardiac research is the electrocardiogram (ECG). A new technology
called ECM uses cutting-edge signal processing techniques to thoroughly evalu-
ate ECG data and aid in illness detection. Long cardiac impulses may be com-
pactly shown via ECM. Real-time monitoring of cardiac problems is aided by
ECM. In comparison to manual identification and automatic arrhythmia detec-
tion, the ECM technique offers higher responsiveness and precision for diagnosing
a cardiac arrhythmia. It is anticipated that it improves the diagnosis of heart
diseases.

Machine learning (ML) and deep learning (DL) models can be used to detect
CHF. But training the model will cost money and take up a lot of memory.
The primary problem with ML and DL models is that they take a long time to
train and need a graphics processing unit (GPU). It takes skill to read the ECG
signal pattern abnormalities between succeeding R-R intervals, making a human
evaluation of the ECG data challenging.

3. ECG data descriptions

The BIDMC CHF Database [31] has long-term ECG recordings of 15 people
with severe congestive heart failure (11 men aged 22 to 71 and 4 women aged
54 to 63). The patient records, which are one hour long, contain ECG signals
captured at 250 Hz over a spectrum of 10 millivolts with 12-bit resolution. The
five hand annotations types that are shown on each record are SVPB, PVCs,
PAC, R-on-T PVC, and Normal.

4. Methodology

The proposed ECM method is shown in Fig. 1 as the flow chart of the ECM
technique. The chart illustrates the step-by-step procedure for the preprocessing
of the ECG signals. The following are the steps for the preprocessing of the ECG
signal.
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Fig. 1. Flow chart for the proposed method.

Step 1: Preprocessing with Pan–Tompkins algorithms [32].
Step 2: After that, determine if the adaptive threshold condition in the de-

cision box is fulfilled or not. If it is, go to the next stage; otherwise, return to
step 1.

Step 3: Go to ECM matrix formation when finished with step 2, and the
ECM matrix divides the ECG signal into equal-length short segments.

Step 4: After segmentation, the smaller segments are turned into a colored
matrix with the amplitude [mV] and intervals (PR, QT, ST) of each ECG wave
(P, QRS, T) color-coded. A higher voltage equals a warmer color (red), whereas a
lower voltage equals a cooler hue (blue). Each line’s RRIs shows the time interval
between two consecutive R peaks.
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Step 5: Previously, RRIs (such as the intervals between the 1st and 2nd R
peaks (RRI 1–2) and the 2nd and 3rd R peaks (RRI 2–3) heartbeats) were
displayed on the ECG monitor’s x-axis. However, on the ECM display, they
are now presented on the y-axis, indicating that the vertical method has been
switched to a horizontal method, enabling simple identification of the needed
parameters.

Step 6: In step 5, manual interpretations of four specific parameters for the
observation of congestive heart failure are required.

5. Results and discussion

In Figs. 2–6, ECM analysis tracks four different types of beats to demon-
strate their potential use. Figure 2 shows the horizontal ECM matrices (a) for
#chf02 and (b) for #chf02 (BIDMC CHF Database). In columns 1:250, 500:1200,
1300:2100, at around 2750, 3300:3350, and 3800:3850, in 4600:4700, and then
at 5700, PVC can be observed. As shown in Fig. 2b the extensive PVC beat
QRS complex is recognizable as a complex with an oblong width, modified co-
lors (indicating changes in amplitude), and expanded periods between consecu-
tive beats. The sample data showing PVC in ECG annotations is chosen, and
as a result, it is noticed that these are characteristic for the extensive PVC beat
QRS complex.

a) b)

Fig. 2. a) Horizontal matrix of #chf02 ECG; b) horizontal matrix of PVC #chf02 ECG signal.

The horizontal ECM matrix for #chf05 (BIDMC CHF Database) is then
shown in Fig. 3a. SVPB is visible in column 500:600, PVC is visible in column
100:500, and RTPVC is visible in columns 800:900, 1700:2000, approximately in
column 2600, 2900:4000, and 6000:6400. A separate matrix is created to demon-
strate the nature of SVPB in Fig. 3b, in which samples with SVPB in the ECG
annotations are included, and it is found that longer RR cycles are frequently
predicted by relatively short RR periods with premature beats, with no varia-
tion in premature R peak demonstration. There is a distinct break in the ECM’s
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a) b)

c)

Fig. 3. a) Horizontal matrix of #chf05 ECG; b) matrix of SVPB ECG signal;
c) matrix of PVC and RTPVC section I #chf05.

regularity when it comes to these PACs. The rhythms are not in sync here. In
Fig. 3c, a distinct matrix is created to demonstrate the condition of PVC and
RTPVC, demonstrating that the extensive PVC and RTPVC beat QRS intricate
may be recognized as a composite with an oblong width, changed colors (showing
amplitude variations), and increased intervals between succeeding beats. PVC in
column 87:93 is observed, and in column 62:68, RTPVC is observed.

In addition, Fig. 4a shows the horizontal ECM matrix for #chf06 (BIDMC
CHF Database). SVPB is observed in columns 1:500, 600:900, 1050:2200,
2600:3300, 3800:4800, and 5300:6300, and RTPVC is observed in 500:600, near
1000, and 2200:2600, 3300:3400, 3600:3700, 4800:4900, and 5100:5300. As a re-
sult, the broad RTPVC beat QRS complex is distinguishable as a complex with
an oblong width, changed colors (showing amplitude variations), and increased
intervals between subsequent beats in Fig. 4b, where a distinct matrix is gen-
erated to highlight the nature of RTPVC. Although the amplitudes are small,
the beats are synchronized (light blue). In Fig. 4c, a separate matrix that only
includes samples with NSR in the ECG annotations is produced to illustrate the
nature of NSR. The beats are on time here and the distinct matrix is developed
in Fig. 4d to emphasize the characteristics of SVPB and RTPVC.
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a) b)

c) d)

Fig. 4. a) #chf06 horizontal ECG signal; b) RTPVC matrix of #chf06 ECG signal; c) NSR
matrix of #chf06 ECG signal; d) horizontal matrix of RTPVC and SVPB for #chf06 section I

signal.

The horizontal ECM matrix is displayed in Fig. 5a for #chf07 (BIDMC CHF
Database). In columns 4000:4500, one observes PAC. In Fig. 5b, a separate
matrix is generated to demonstrate the nature of PAC, in which only samples
with PAC in ECG annotations are taken, and it is discovered that longer RR
cycles are frequently preceded by shorter (vertically aligned) RR cycles with
premature beats, with no variation in premature R peak demonstration. The
beats are in tune here.

a) b)

Fig. 5. a) #chf07 horizontal matrix of ECG signal; b) #chf07 horizontal matrix of PVC ECG
signal.



300 B.M. Rao, A. Kumar

Figure 6a shows the horizontal ECM matrix for #chf08 (BIDMC CHF Data-
base). SVPB may be seen in columns 480:1000. In Fig. 6b, a separate matrix is
built, highlighting the nature of SVPB in columns 42:62 and 82:88 by utilizing
section 1000:1100.
a) b)

Fig. 6. a) #chf08 horizontal matrix of ECG signal; b) #chf08 horizontal matrix of SVPB
section I.

Altogether, the ECM approach proved successful in detecting all of the dif-
ferent types of conditions found in the BIDMC CHF database. The suggested
approach performance measurements are presented in the last line of Table 1.
This data demonstrates that the ECM approach may be used to visually iden-
tify differences in ECG peak representation, amplitude, and durations between
various peaks.

Table 1. Comparison of existing methods and the proposed method.

Algorithm Year Sensitivity
[%]

Specificity
[%]

Precision
[%]

Accuracy
[%] F1-score PPV

[%]
Pecchia et al. [12]
(ST-HRV) 2010 89.70 100 – 96.40 – –

Altan et al. [13]
(MLPNN) 2016 97.13 98.18 – 97.53 – –

Acharya et al. [26]
(CNN) 2017 98.8 99.01 – 98.97 – –

Choudhary et al. [14]
(SVM, KNN RT) 2019 – – 71 – 0.81 –

Brown et al. [29]
(ECM) 2019 – – 90 – 0.90 86

Proposed
algorithm (ECM) 2022 97.53 96.02 99.1 96.89 97.76 –

The main contributions of this research are:
• In this work, an ECM matrix was utilized for the detection of CHF. Until

now, no study wasconducted on detecting CHF using ECM. Therefore, this
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work proposes the detection of CHF using ECM, which is easy to analyze
and less time-consuming.

• The proposed method was applied to the standard database, i.e., MIT-BIH
CHF, for authenticity.

• It was found that the proposed method had an accuracy of 96.6%, a sen-
sitivity of 97.53%, a specificity of 96.02%, and a precision of 99.1%.

This research looked into four main problems: “(1) For the BIDMC CHF
Dataset durations, both ECG and ECM annotations identified CHF, (2) ECM
annotations but not ECG annotations identified CHF, (3) ECM annotations but
not ECG annotations identified CHF, and (4) ECM and ECG annotations did
not indicate CHF” [31]. When the ECG and ECM annotations concurred, these
durations of time were utilized to compute the time in CHF. In addition, the
proportion of time with ECM and ECG annotations that are inconsistent was
calculated. The events were either absent (false negative) or incorrectly cate-
gorized when annotations between ECG and ECM annotations did not follow
(false positive). On the premise that ECG annotations (the standard measure)
provide 100 percent specificity and sensitivity, the relative specificity and sensi-
tivity of the ECM annotation were calculated. “True positives (TP) were defined
as aspects in which both ECG and ECM annotations identified CHF, false pos-
itives (FP) were defined as aspects in which ECM identified CHF, but ECG
annotations did not, and false-negatives (FN) were defined as aspects in which
ECM did not identify CHF, but ECG annotations did, and true negatives (TN)
were defined as aspects in which both ECG and ECM annotations did not iden-
tify CHF” [34]. The CHF signals (TP, FP, FN, TN) were tagged using these
four ECM annotations, and five key parameters were determined, as shown in
Table 1. A comparison of existing methods is shown in Table 1. The following
restrictions apply to the ECM method’s ability to identify CHF: the suggested
solution requires manual ECM interpretation. A crucial challenge is to recognize
R-on-T PVCs and other premature ventricular contractions. Excellent observa-
tional abilities are also required to distinguish between PAC and SVPB.

Only about 200 KB of memory is needed to keep each colored ECM matrix
of an ECG signal with a sampling frequency of 250 Hz and a length of 1 hour.
There are just 15 recordings in the MIT-BIH CHF database, and their ECM ma-
trices only require about 2.929 MB of capacity. Because of this, the ECM uses
far less storage space than other methods that are already in use.

The formation of an ECM matrix is a very simple process. An ECM matrix
is formed as follows:

• Equally sized, short segments of the ECG signal are separated. The rising
short segment consists of two subsequent heartbeats and starts at a position
in each section that is between the T-wave of the preceding heartbeat
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and the P-wave of the current pulse. After that, each segment’s shorter
segments are all vertically aligned to the first of the two R peaks.

• Following segmentation, these smaller segments are converted into a col-
ored matrix, where each ECG wave’s amplitude [mV] and intervals (PR,
QT, ST) are denoted by a different hue. A greater voltage is shown by the
warmer red color, whereas a lower voltage is denoted by the cooler blue
color. The RR intervals show how long each line’s two adjacent R peaks
are separated from one another.

6. Conclusion

Congestive heart failure is a life-threatening condition that contributes sig-
nificantly to global death rates. This situation could only be avoided if it could
be diagnosed more precisely and in a shorter amount of time. By assessing a vast
quantity of data in a single glance, the ECM plays a critical role in achieving this
goal. The accuracy of the presented approach was evaluated using the BIDMC
CHF dataset, which yielded a 96.89% accuracy, with sensitivity and specificity
values of 97.53% and 96.02%, a precision of 99.1%, and an F1-score of 97.76%.
Although this study may not be able to distinguish between PVCs and R-on-T
PVCs or PACs and SVPBs, separate matrices derived from their hand annota-
tions may be able to do so. This method might be used to examine the effects of
various arrhythmias. With more computing power, a larger amount of data may
be examined, resulting in improved results for the same approach. By combining
the ECM approach with deep learning algorithms, the outcomes of the ECM
technique might be studied more easily.
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