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INTRODUCTION

The quality of the steel products and its ex-
pensiveness is the determining the criterion for 
successfully more-competitive of steel produc-
tion company. In various types of annealing, the 
temperature of the annealed steel coils is the main 
variable that determines the quality of product and 
energy consumption. When the temperature is too 
high, there is a useless cost of energy. On the oth-
er hand, the required product quality may not be 
obtained. Various sensors measuring the surface 
temperatures of the massive product exist, but for 
the non-destructive measuring of inner tempera-
tures, only model-based soft-sensors can be used. 
The existence of such sensors would enable effec-
tive control of the quality of temperature behavior 
in real-time and the development of new methods 
of process control with a great time delay. This 

paper presents a theoretical background that was 
used for soft-sensor modeling and verification of 
the proposed models on the operational data. The 
aim was to propose the software model able to 
estimate the temperatures inside a steel coil based 
on the measured boundary temperatures. These 
inner temperatures were measured by thermocou-
ples only for the soft-sensing verification. The au-
thors of this paper also developed the techniques 
for soft-sensing boundary coil temperatures based 
on the temperature of annealing atmosphere in a 
bell furnace [8, 10]. The second method that was 
verified to soft-sensing of inner coil temperatures 
is based on machine learning. Support Vector 
Regression (SVR) was used as a part of Sup-
port Vector Machines (SVMs). The results from 
black-box machine model will be compared with 
the proposed analytical model in this paper. The 
proposed approaches should be possible to apply 

Volume 13, Issue 4, December 2019, pages 70–86
https://doi.org/10.12913/22998624/112542

Soft-Sensing in Batch Annealing Based on Finite Differential 
Method and Support Vector Regression

Ján Kačur1*, Milan Durdán1, Marek Laciak1, Patrik Flegner1

1  Technical University of Košice, Faculty BERG, Institute of Control and Informatization of Production Processes, 
Němcovej 3, 042 00 Košice, Slovak Republic 

*  Corresponding author’s e-mail: jan.kacur@tuke.sk

ABSTRACT
The temperature of annealed steel coils is a determining variable of the future steel sheets quality. This variable 
also determines the energy consumption in operation. Unfortunately, the monitoring of coil inner temperature is 
problematic due to the furnace environment with high temperature, coil structure, and annealing principle. Cur-
rently, there are no measuring principles that can measure the temperature inside the heat-treated product in a 
non-destructive manner. In this paper, the soft sensing of inner temperature based on the theory of non-stationary 
heat conduction and approach based on Support Vector Regression (SVR) was presented. The results showed 
that a black-box approach based on the SVR could replace an analytic approach, though with lesser performance. 
Several annealing experiments were performed to create a training data set and model performance improvement 
in the estimation of inner coil temperatures. The proposed software based on non-stationary heat conduction can 
calculate the behavior of inner coil temperature from the measured boundary temperatures that are measured by 
thermocouples. The soft-sensing principles presented in this paper were verified under laboratory conditions and 
on the data obtained from a real annealing plant.

Keywords: annealing, steel coil, temperature measurement, soft-sensing, finite differences method, support vector 
regression.

Advances in Science and Technology 
Research Journal

Received: 2019.09.06
Revised: 2019.10.15

Accepted: 2019.11.18
Available online: 2019.12.01



71

Advances in Science and Technology Research Journal  Vol. 13(4), 2019

in the online measurement of inner temperatures 
and obtain a better insight into the process behav-
ior. In this paper, the results from experimental 
measurements and simulations are provided.

Understanding batch annealing

Bell furnaces are widely used for annealing of 
steel coils. The coils can be of steel strips, a steel 
wire or any other shape which can be loaded into 
the furnace. The furnace can be electrically heat-
ed, oil-fired or gas-fired. It can also be used for 
decarburizing of stampings. A bell-type furnace 
(see Figure 1) is a versatile furnace suitable for 
black, bright and spheroid annealing of steel and 
non-ferrous strips, wires and general heat treat-
ment processes up to 1100°C.

The furnace is of a cylindrical furnace in top 
hood design that involves the furnace kept on 
the fixed bases in the inverted position. In metal-
lurgy and materials science, annealing is a heat 
treatment that alters the physical and sometimes 
chemical properties of a material to increase its 
ductility and reduce its hardness, making it more 
workable [1, 6]. It involves heating a material 
above its recrystallization temperature, maintain-
ing a suitable temperature, and then cooling it. 
The three stages of the annealing process that pro-

ceed as the temperature of the material increased 
are recovery, recrystallization, and grain growth. 
The impact of annealing temperature and anneal-
ing atmosphere on the grain growing was well 
analyzed in [12, 30]. 

Bell furnaces comprise the stand, the heating 
hood, muffle, convector rings, and burners; on the 
surface of the muffle there is a lining in the form of 
combustion catalysts installed in the area of burn-
ers. The bell-type furnace catalytic combustion 
has high efficiency and environmental cleanliness 
of combustion. The principle of the furnace cover 
the following: in the initial period of the burner is 
heated pads to a certain temperature, then shuts 
off the fuel supply and the burner is transferred 
into the mode of catalytic combustion. The gas-
eous fuel with the oxidizer (i.e., air) is heated in 
the heat exchanger, served on hot plates made in 
the form of catalysts with flameless combustion 
of the fuel, characterized by high environmental 
performance and the effective use of heat [33].

Three or four coils are stacked on top of each 
other, separated by convector plates, in a bell-
shaped furnace. The inner cover is placed over 
the coils and its volume filled with an inert gas 
to prevent the coils from oxidizing under the high 
temperatures. The outer furnace cover is put in 
position. Burners are fired tangentially at the in-
ner cover causing it to heat up. The heat from this 
cover is radiated to the coils causing them to heat 
up too. Then coils are held, or soaked, at a tem-
perature of around 650°C. Further, these coils are 
left to cool to the room temperature. The required 
temperature was achieved through the coil, long 
heating, soaking and cooling times [5].

Recrystallization of the deformed struc-
ture begins to take place at the temperatures 
around 550°C. This is done through nucleation 
and growth of the nuclei. This process uses the 

 
Fig. 1. Scheme of bell furnace (modified after [1]): 

1 – stand, a 2 – heating cap, 3 – muffle in which there 
are pads, 4 – pads in the form of combustion catalysts 

located in the combustion zone, 5 – burners, 6 – 
convection rings, 7 – controls the fuel supply, 8 – the 

recuperative oxidizer and fuel, 9 – steel coil
 

Fig. 2. Typical batch annealing cycle
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stored energy within the grains and reduces the 
dislocation density [24]. 

A typical batch annealing cycle is shown in 
Figure 2. The cooling rate can be adjusted so that 
some carbon will remain in solid solution [6]. 

Figure 3 shows the basic scheme of tempera-
ture measurements on the bell furnace where 
experimental annealing was performed. Thermo-
couples of K-type, Programmable Logic Control-
ler (PLC), and PC were used in measuring chain 
based on RS232 and communication protocol 
OPC (i.e., Open Platform Communication). The 
authors of this paper have created their own pro-
gram for recording and displaying of measured 
temperatures., The measurements of coil temper-
atures using thermocouples were also checked 
for the verification of the indirect measurement 
based on the soft-sensor. For these check mea-
surements, thermocouples were placed between 
windings of the given coil.

Overview of soft-sensing in annealing

In general, two types of steel strip annealing 
are processed in industry, i.e., batch type anneal-
ing where steel strips are rolled into coils and an-
nealed in a bell furnace and continuous annealing 

where steel strips are passed thought the anneal-
ing line. In literature, various modeling approach-
es can be found. Studies are aimed especially at 
the prediction of final properties of annealed steel. 
They have primarily applied the laws of non-
stationary heat conduction and neural networks 
(NNs). Much research work with non-stationary 
heat conduction in batch annealing has been done 
by Kostúr et al. [23]. The authors created an intel-
ligent system of soft-sensing inner temperatures 
of steel coil annealed in a bell furnace.

Haouam et al. [14] have proposed a numeri-
cal model of the temperature distribution of steel 
coils during annealing process on differential 
equations of heat conduction. The resolution is 
performed with the method of finite differences. 
Thermal coefficients used in the model were ad-
justed by the simplex optimization technique. The 
modeling results show good agreement with the 
experimental measurements.

Durdán et al. [10] and Kostúr [21] proposed 
the system of soft-sensing temperatures in the an-
nealing process based on the rules of non-station-
ary heat conduction. Basically, on the tempera-
ture of protection atmosphere measured by a ther-
mocouple, the system calculates the temperatures 
on the surface and inside of the annealed batch. 
The system of soft-sensing was verified using op-
erational measurements obtained on the anneal-
ing plant. The surface temperatures of the steel 
coil that was experimentally annealed were mod-
eled by a regression model and its inner tempera-
ture by differential equations of heat conduction. 
Moreover, the comparison of the proposed ana-
lytical model with neural network (NN) was per-
formed in this paper. The model of heat flows to 
estimate the surface temperature of the annealed 
steel coil was proposed in [8]. The modeling of 
the batch annealing process based only on neural 
network was initially published in [28].

The paper [11] describes the design of a phys-
ical model of the bell furnace, the task of which is 
to explore the process of annealing of steel coils 
for optimization. Optimization covers the the re-
search on the annealing regimes in a selected type 
of furnace atmosphere and the design of the mea-
suring sensors for the purpose of verification of 
soft-sensing system of temperatures in the batch. 
In this paper, the physical model of bell furnace 
and heat flow sensor was proposed. Wigley [34] 
has developed a model to predict the final proper-
ties of continuous annealed steel. The actual pro-
cess data, along with the mechanical properties 

 
Fig. 3. Measuring chain in experimental annealing
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derived using tensile testing were used to create 
the model. A generalized regression network was 
used as the main predictive mechanism. Saraee et 
al. [29] modeled the batch annealing process, i.e., 
prediction of heating and cooling time and trend 
prediction of coil core temperature. The modeling 
of the annealing process was carried out by us-
ing the data mining techniques and backpropaga-
tion NN. A good correlation between the results 
of NN method and the results of thermal models 
has been obtained in this work. The authors have 
used two regression models, one for heating and 
the second for cooling. The parameters of the re-
gression function were estimated by NN. Further 
examples of the use of NNs in annealing can be 
found in [2, 4, 7, 13, 15, 16, 17]. 

Overfitting was identified as a potential prob-
lem associated with NNs, where the model fits the 
training data but not further data. It was suggested 
that to overcome this data should be divided into 
the training and test data, with the training data 
used to make the model and the test data used to 
validate this model [34]. The back-propagation 
NNs are capable of representing the general non-
linear functions, but their disadvantage is often 
very difficult to teaching, because practically there 
is always a risk of deadlock in the local minimum 
of the error function, and in addition, learning is 
highly complicated by looking for a high number 
of weights in the multidimensional space. An al-
ternative and a relatively new approach involve 
the so-called Support Vector Machines (SVMs). 
The SVMs are used for time series prediction 
and classification tasks. These methods repre-
sent the field of the so-called kernel machines 
and exploit the benefits provided by effective 
algorithms for finding a linear boundary while 
being able to represent highly complex non-lin-
ear functions. The kernel functions methods try 
to find an optimal linear separator. The optimal 
linear separator in SVMs algorithm is searched 
using the quadratic programming method. In lit-
erature, there is only low evidence of Support 
Vector Machines within the steel industry and 
especially in steel annealing. Some application 
of SVR can be found in [19] and [20].

Experimental annealing in a laboratory 
furnace

In this paper, a bell furnace used for annealing 
coils and heated by gas was considered. A physi-
cal model of steel coil was created for this furnace 
where annealing is provided by electric spirals 

(see Figure 4). Several experiments of tempera-
ture measurements on a real annealing plant were 
also performed using PLC and PC.

Annealing was carried out on a model of steel 
coil with thermocouples which was placed on spi-
rals (i.e., control temperatures measurement), in 
the coil surface (i.e., boundary temperatures mea-
surement) and in the coil (i.e., check measure-
ment of inner temperatures). The experimental 
annealing was used in the research on the soft-
sensing system of inner temperature in steel coil 
with the application on a real bell furnace and real 
annealing. It was not possible to control the fur-
nace continually by the change of electric power 
(400 VAC). For this reason, only digital signal 
(24 VDC) was used for control of heating (switch 
on/off of spirals) and constant supply power. In 
[11] and [18], the theoretical background of the 
proposed control system implemented on PLC 
(B&R 2005) has been presented. The control 
algorithm performs the pulse width modulated 
(PWM) control in cooperation with PI control-
ler and ON-OFF control of the heating [18]. The 
PLC was connected to PC through Bernecker & 
Rainer Process Variable Interface (B&R PVI) and 
OPC. The monitoring system is possible to con-
trol heating according to the temperatures mea-
sured by thermocouples and placed on electric 
spiral or by inner coil temperatures estimated by 
soft-sensor (i.e., by a model). 

 
Fig. 4. Experimental bell furnace
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UNDERSTANDING OF MODELING 
METHODS

In this section, two methods that can be used 
for soft-sensing temperatures in an annealed coil 
were explained. The first method is based on the 
theory of non-stationary heat conduction and the 
second method – on support vector regression. 
While the first method is based on an analytical 
approach, the second one draws on the principle 
of the black box and machine learning.

Nonstationary heat conduction modeling

The starting point for creating the mathemati-
cal model was the Fourier-Kirhhoff differential 
equation of heat conduction (1).

(1)

where:  a = λ ⁄ (c ∙ ρ) represents thermal diffusiv-
ity, which characterizes the rate of tem-
perature change in the substance (m2∙s-1). 
In an analysis of heat conduction, thermal 
diffusivity is the thermal conductivity di-
vided by density and specific heat capac-
ity at constant pressure. The parameter λ 
is the thermal conductivity that depends 
on the type of material (Wm-1∙K-1), c rep-
resents specific heat capacity (J∙kg-1∙K-1), 
ρ represents the density of the substance 
(kg∙m-3); T is the temperature (K); τ is 
the time (s); iQv is an internal heat source 
(W∙m3); ∇ is Hamilton’s operator; ∇2T 
represents the second derivation of the 
temperature by spatial coordinates [31].

If the heat is generated or is consumed in the 
object, the power of internal heat sources iQv is 
determined for the unit of volume (W∙m3). In the 
absence of internal heat sources, i.e. iQv = 0, Fou-
rier differential equation of heat conduction for a 
temperature field in a rigid object without a heat 
source can be obtained as the following:

(2)

The left side of equation (2) (i.e., the partial 
derivation of temperature T according to time τ) 
is for time-stable temperature processes zero (i.e., 
stationary heat conduction). Equation (2) is a par-
tial differential equation of the second order with 
the right side. Its solution is also for iQv = 0 also 
complex for geometrically simple objects. This 
equation can be solved using the numerical meth-

ods, the essence of which is to divide the object 
to the desired number appropriately of selected 
planar or spatial sections (i.e., elements), the sub-
stitution of derivations by the ratio of differen-
tiation and deriving formulas for tracking heat 
conduction between elements (i.e., method finite 
element method, finite difference method, bound-
ary element method). 

The principle of all numerical methods is that 
a continuous change of all variables, found in the 
heat equation (2) is replaced by a discontinuous 
change. Thus, the infinitely small increments of 
variables (i.e., differentials) are replaced by the 
finite increments (i.e., differences). For such a 
procedure, the volume of the considered body is 
divided into a larger number of elementary vol-
umes whose form depends on the selected coor-
dinate system. In the method of finite differences, 
the area in which the Fourier equation of heat 
conduction is solved, a grid composed of a finite 
number of nodes will be covered. In these nodes, 
the value of derivation is substituted by the differ-
ence, i.e. the interpolation polynomial is replaced 
by several nodes of the grid, and their derivations 
are calculated. This creates a differential equation 
that is solved with known algebraic methods. 

The most used types of grids include square, 
rectangular, polar hexagonal. The resulting model 
for the soft-sensing is based on the direct temper-
ature measurement (i.e., contact measurement) 
of the surface by thermocouples (i.e., boundary 
temperatures) and solving the Fourier partial dif-
ferential equation of heat conduction (2). Two 
variants of the two-dimensional solution of this 
model were developed, differing by the solution 
method of Fourier equation.

Finite differences method

The explicit application of finite differences 
method was used to solve equation (2) numerical-
ly. The problem of modeling non-stationary heat 
conduction in a 3D object (i.e., the steel coil) was 
simplified to model the heat conduction only in a 
2D matrix, i.e., a rectangular cross-section of the 
coil. The aim was to solve the mathematical mod-
el of 2D object heat conduction. For this reason, 
equation (2) was considered in the following form:

(3)

at boundary conditions of the 1st type
Ts = f(x, y) (4)
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and initial conditions
TI (x, y) = f(x, y, 0) (5)

where: TS is the surface temperature of the ob-
ject and TI is the object temperature at 
time τ = 0 [31].

The considered body is a steel coil. The mathe-
matical model (3) is solved with the grid method in 
the x, y coordinate system. On the given the object 
(i.e., in the cross-section of the coil), a grid consist-
ing of parallel lines with the co-ordinate axes at a 
distance of Δx and Δy was created (see Figure 5).

The intersection points are called nodes (i.e., 
node points). The temperature at nodes is unam-
biguously defined by the following indices:
 • i is an index of the node in the direction of the 

x axis, i.e., x = i ∙ ∆x for i = 1, 2, ∙∙∙, N;
 • j is an index of the node in the direction of the 

y axis, i.e., y = i ∙ ∆y for i = 1, 2, ∙∙∙, M;
 • k is an index of the time step i.e., τ = k ∙ ∆τ for 

k = 1, 2, ∙∙∙, n,
where M is the total number of nodes on x axis, N 
is the total number of nodes on y axis, and n is the 
total number of simulation time steps.

Then Ti, j, k represents the temperature at the 
node that lies on the intersection of the i-th paral-
lel line with the x-th coordinate and the j-th paral-
lel line with y coordinate at time τ = k ∙ ∆τ. For 
a small step grid (i.e., with low values of Δx, Δy, 
Δτ), the following is valid:

(6)

(7)

Fig. 5. The scheme of coil grid parameters

(8)

(9)

and analogously in direction of the y-axis

(10)

By substituting equations (6), (9) and (10) into equation (3) and after algebraic modification, the 
final model (11) can be obtained. 

(11)

This equation is used to calculate temperatures at the nodal points of the coil at any time step k. 
On the basis of equation (11), the temperature at any node point in the next time step can be calculated 
(i.e., if the temperatures at the nodal points by which the point is surrounded in the previous time step 
are known). A closer analysis of equation (11) shows that its first term in brackets causes divergence in 
calculations if it takes negative values. Due to the stability of the solution, it is necessary to calculate 
the time step from the condition of stability (13) for the selected sections Δx and Δy. The duration of the 
time step is determined from the stability condition, which in equation (11) provides the physical sense 
of the solution. The following applies for the stability condition [22]:

(12)

then

(13)
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The equation (13) can be used in the simula-
tion for estimation of time step ∆τ. The condition 
of stability (12) from which the value of the pa-
rameter Δτ (13) is determined, is checked in the 
calculation of each node. Similarly, the explicit 
equation for calculating the temperature field and 
time step can be derived for the three-dimension-
al solution of the heat conduction by introducing 
the Δz parameter in the z-axis direction.

Temperature modeling based on Support 
Vector Regression (SVR)

In the application of SVR on annealing pro-
cess, the basic idea is to map the temperature 
dataset T to the high-dimensional feature space 
through non-linear mapping Ф and to perform 
linear regression in this space [3, 32]. In general, 
the input data set represents a vector of observa-
tions x = (x1, x2, ...,xl) and vector of targets y. 

The usage can be found when the patterns of 
the training data x are not linearly separable. The 

patterns are mapped by function Ф to another space 
where they can be separable. In application on an-
nealing of steel coil, the input dataset represents 
the vector of “directly” measured temperatures T = 
(T1, T2, …,Tl), i.e., measured by contact with ther-
mocouples and responded measured outputs y, i.e., 
target inner temperatures. If a regression with one 
output variable is considered, the observations on 
the examined object can be written as a sequence 
of pairs (T1, y1), …, (Ti, yi), …, (Tl, yl), Ti ∈ Rn, 
yi ∈ R. The vector Ti represents one pattern of in-
put observations (i.e., coil boundary temperatures) 
Ti = (Ti1, Ti2, …, Tin). In order to create pairs for 
the training phase, the targets have to be measured 
by some way (i.e., several measurements of inner 
temperatures by thermocouples). Thus, the linear 
regression in the high-dimensional feature space 
corresponds to the non-linear regression in the low 
dimensional input space Rn. The prediction f(T) 
from the pattern T can be mathematically written 
as dot products in the low-dimensional input space 
as the following [27]:

(14)

where:  l is the number of patterns (T1, T2, …, Tl), parameter b represents the limit value or the so-called 
threshold and parameters αi, αi* have an intuitive interpretation as the forces of pull or push of 
f(Ti) to yi measurement. If considering two points Ti Tj, then the function that returns the scalar 
product between their images in high-dimensional feature space is known as the kernel function. 
In equation (14), the kernel function k(Ti, Tj) = (Ф(Ti) ∙ Ф(Tj)) is established. In this paper the 
Gaussian kernel, i.e., function k(Ti, Tj) = e-γ‖Ti-Tj ‖2 (γ represents the sensitivity of the kernel func-
tion) and linear kernel, i.e., k(Ti, Tj) = TiT Tj were used. The application of polynomial kernel, 
i.e., k(Ti, Tj) = (γ(TiT Tj + 1))d (d is an integer) fails in the training phase. 

When creating the SVR model, the kernel matrix K = (k(Ti, Tj))l
i, j = 1 is usually used. It is the sym-

metric, positively defined matrix that specifies scalar products between all the pairs of points {Ti}l
i, j = 1. If 

the kernel matrix is calculated, there is no further need for a kernel function or implicitly defined map-
ping Ф nor coordinates of the points Ф(Ti). The observations with non-zero Langrage multipliers αi are 
named as support vectors. The function used to predict new values depends only on support vectors and 
has the form:

(15)

where:  α, α* are non-negative Langrage multipliers for each observation T. Threshold b can be derived 
from Langrage multipliers. In epsilon-insensitive regression (ε-SVR), the training data set in-
cludes predictor variables T and observed responds y of the system. The aim is to find a function 
f(T) that is derived from y using a value no higher than ε for each training point T and at the 
same time so that this function was flat as much as possible. Non-linear SVM regression finds 
the Langrage coefficients by minimizing the following Langrage function [32]:

(16)
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with constraints:

(17)

In the optimization task, the Karush-Kuhn-
Tucker (KKT) complementary conditions, as 
the optimization constraints necessary to obtain 
optimal values of α, should be met. The mini-
mization problem can be solved using the QP 
techniques [26, 32].

RESULTS AND DISCUSSIONS

The two presented approaches for tempera-
ture modeling in annealing were applied on the 
experimentally measured data. Four experimental 
measurements on laboratory coil and two mea-
surements on real coil were utilized for modeling. 
An approach based on the rules of non-stationary 
heat conduction and finite difference method was 
compared with the SVR. This section presents the 
results from the application of these approaches. 
The goal was to estimate the behavior of inner 
temperatures in the coil that was annealed.

Software for modeling temperature field

The essence of the software solution is a pro-
gram that solves equation (11). The program cal-
culates the temperature at each node of the inner 
matrix i.e., the grid of nodes (see Figure 6) (i.e., 
application on steel coil cutout). The node matrix 
has the size of M×N.

The temperatures in marginal nodes of the 
matrix (i.e., edge points of the grid) are consid-
ered known at each time step of the simulation. 
These are the temperatures measured during the 
coil annealing in the experimental bell furnace. 
In each subsequent time step (i.e., step k + 1), the 
temperatures of the nodes of the inner matrix are 
calculated from the known matrix temperatures 
from the previous time step (i.e., step k). This ap-
proach is called a solution at the boundary condi-
tions of the 1st type. The designed program stores 
the matrices from all simulation time steps into 
both text and binary files, so the simulation can 
later be parsed and graphed. 

All measured temperatures are stored in text 
files and in the directories named according to the 
selected sampling period (i.e., 1s, 5s or 30s sam-

ples). The program allows selecting the source di-
rectory with the desired text files through the dia-
log box. For each thermocouple used then, there 
is a unique label that matches the name of the text 
file (e.g., T1.txt or T2.txt).

Figure 9 shows the positioning of thermocou-
ples projected into the space of the temperature 
field (i.e., matrix or grid of nodes). This figure 
shows that the temperatures were measured not 
only at the edges of the coil (known marginal 
nodes) but even at some points inside the matrix. 
The measured temperatures inside the coil then 
served for checking model compliance with real 
measurement. Since all edge temperatures need 
to be known to calculate the temperatures in the 
inner matrix, and not measured at all temperature 
nodes, it was necessary to add an approximation 
algorithm of the marginal temperatures into ini-
tialization procedure. The linear approximation 
algorithm calculates the unknown temperatures 
(i.e., non-measured ones), e.g., T11, T12 from two 
known (i.e., measured) temperatures, e.g., T10 
and T13. This procedure was applied wherever 
the temperature at the edge points was missing.

Figure 7 shows the main program window 
for modeling the temperatures in the temperature 
field. The program was written in the develop-
ment environment of Embarcadero® RAD Studio 
using Delphi programming language (i.e., Object 
Pascal) using various visual components. The 
program was designed as an application for MS 

 
Fig. 6. Thermocouple positions on a physical model of 
the coil (∆x = 0.00375 m, ∆y = 0.00790 m, M = 5, 

N = 13)
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Windows. The main program window contains 
several tabs (i.e., Calculation, Matrix, Graphs, 
and Stability Condition);  the user can switch be-
tween them. Next, the meaning of the individual 
tabs will be briefly explained for program usage. 
The first tab appears implicitly when the program 
is started and enables to set the initial simulation 
parameters and start the main calculation. At the 
top of the tab, there are edit boxes through which 
the user can change the dimensions of Δx, Δy, 

and the size of the time step Δτ of the simula-
tion. It is also possible to specify the dimensions 
of the matrix as the number of nodes M on the 
x-axis or the number of nodes N on the y-axis. 
The last adjustable parameter is the simulation 
time, which represents the duration of the entire 
simulation. These parameters are only reflected 
in the calculations, which are much faster than 
the simulation time. On the Matrix tab, the user 
can view the matrix from any time step k. The 

 
Fig. 7. a.) The main screen of the proposed application for modeling temperature field, b.) Matrix tab to display 
the calculated temperature field from a specific time step k, c.) Charts tab to display temperatures trends from 

the selected nodes (Legend: Blue line – temperature T2 measured by thermocouple, Redline – T2 estimated by 
model of nonstationary heat conduction), d.) Window of 3D plotting
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format of displayed temperatures can be changed 
for °C or K. On the Charts tab, the user can view 
the trend of any temperature at any position in 
the matrix (i.e., use View button). However, the 
coordinates of a given node should be provided. 
In this way, the user can view the trend of three 
selected points. For comparison of temperatures, 
the user can also display the measured tempera-
tures of any node stored in a text file. The trend of 
the calculated temperature can be displayed after 
simulation, but the program also allows continu-
ous plotting of temperature during the simulation. 
The temperature field can also be displayed as 
a 3D graph by pressing the 3D Graph button on 
the Charts tab. It is a 3D display of a two-dimen-
sional temperature field where the temperature is 
displayed on the z-coordinate. There are special 
tools for graph rotation, color change, selection 
of the matrix shown, or graph increase in the 3D 
graph display window. The window for saving 
simulation in different ways is an essential tool 
in the program.

The simulation model should the predict 
quantitative information at least as accurately as 
it can be measured. In the case of the quantitative 
deficiencies of the simulation model, it is possible 
to adapt the simulation model using ambiguously 
determined input parameters of the model.

The task of adaptation is to minimize the 
quantitative deficiencies of the model to the re-
quired accuracy. In this case, the thermophysical 
properties of the steel (i.e., thermal diffusivity a, 
thermal conductivity λ, and specific heat of the 
steel c) in the model may be adapted. The adap-
tation algorithm is based on principle of the op-
timization method. The goal is to minimize the 
following objective function:

(18)

where: parameter Ti
mod represents the i-th value 

of temperature estimated by model and 
parameter Ti

meas is the i-th value of the se-
lected temperature (i.e., the check inner 
temperature) that was measured by ther-
mocouple in the batch (i.e., steel coil). 
The parameter i represents the time step 
of the simulation (i = 1, 2, ..., τk) and τk is 
the total number of Tmeas samples. 

The core of the adaptation of selected thermo-
physical properties is the optimization algorithm, 
which is based on the principle of iterative dy-
namic programming (IDP) and the gradient meth-
od as discussed in the paper [9].

Several simulations were performed from 
experimental measurements on a laboratory coil 
(see Table 1) in the electric furnace. Two real coil 
measurements from real annealing plant were 
also available (see Table 5). In the data from a real 
annealing plant, the actual coil dimensions and 
specific matrix division were used. The match 
quality of the measured temperature and tempera-
ture calculated from the model was quantitatively 
expressed by the mean absolute percentage error 
(MAPE) (19) and by the maximum difference. In 
statistic, MAPE represents a measure of predic-
tion accuracy of a forecasting method. It usually 
expresses precision as a percentage.

(19)

where: Tk
mod is the temperature calculated by 

model; Tk
meas is the measured temperature; 

n is the total number of time steps from the 
simulation; k is the time step (k = 1, …, n).

Results of soft-sensing based on non-
stationary heat conduction

The simulations of inner temperatures soft 
sensing were performed through the proposed 
Heat Transfer application (see Figure 7). This 
application solves equation (11) to calculate the 
temperature field in the steel coil. The simulations 
were performed on laboratory measurements and 
the measurements from the annealing plant. In 
this simulation, only the surface or rather bound-

 
Fig. 8. Measured surface temperatures on laboratory 

coil from experiment #2
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ary temperatures measured on the coils during 
experimental annealing were utilized as model-
ing inputs. Figure 8 shows surface, i.e. boundary 
temperatures measured by thermocouples during 
experimental laboratory annealing.

The results of simulations in four laboratory 
measurements are shown in Table 1. Designation 
of T2, T3, and T4 is for thermocouples in nodes 
where the measured temperature was compared 
with the model. The designation of the thermocou-
ples corresponds to the scheme shown in Figure 6.

Figure 9 shows a visual comparison of mea-
surement and simulation conformity performed 

on a laboratory coil. The coil was heated in a lab-
oratory furnace. The technical realization of the 
measurement was based on a PLC and a comput-
er. In the figure, the blue line shows the measured 
temperature, and the red line represents simulated 
temperature (i.e., calculated). The MAPE found 
in this measurement was 1.80%, and the maxi-
mum difference was 15.40°C. The comparing 
temperature was measured by the thermocouple 
T4, the placement of which inside the coil is dem-
onstrated by the scheme in Figure 6.

The results of simulations with the measure-
ments on the real coil are shown in Tab. 2. The 
node matrix was regarded as shown in Figure 10. 
Two different measuring experiments were ad-
opted from real annealing plants. In experiment 
#1, the diameters of coils were 1800 mm, height 
966 mm and weight was approximately 17 t. In 
this experiment, the temperature T11 (i.e., in Coil 
#4) was modeled to its estimation in annealing In 
experiment #2, the diameters of coils were 1600 
mm, height 966 mm and weight was approxi-
mately 18 t. In this experiment the temperatures 
T2 and T8 (i.e., Coil #1 and Coil #3) were mod-
eled to its estimation in annealing. 

The check thermocouples were placed on the 
position of modeled inner temperatures  (simi-
larly as in laboratory coil). The coils were bedded 
on each other on the stand. In the first experiment, 
four coils were bedded on each other, and in the 
second, only three coils were bedded. The con-
vective rings were placed between coils. In the 

Table 1. Soft-sensor performance in laboratory 
measurements

Exp. 
#

Temp.
MAPE

(%)
Max. difference 

(°C)

1

T2 4.40 35.38

T3 6.83 59.85

T4 4.33 30.95

2

T2 2.45 23.50

T3 3.20 27.48

T4 3.12 13.80

3

T2 5.03 51.46

T3 3.86 26.99

T4 2.31 13.80

4

T2 7.73 61.12

T3 4.51 29.57

T4 1.80 15.40

 
Fig. 9. Comparison of simulated and measured temperature T4 on laboratory coil (experiment #4)
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first experiment T1, T4, T7, and T10 were mea-
sured as the surface temperatures. Moreover, the 
temperature of annealing atmosphere, i.e., HNX 
mix gas was measured. 

The results show that better performance of 
model based on nonstationary heat conduction was 
obtained in Experiment #2 and temperature T8 (see 
Table 2). Figure 11 shows the trend of the measured 
temperature inside the coil and the simulated tem-
perature, which was calculated from the measured 
surface temperatures. The measurements were per-
formed on a real steel coil from the annealing plant. 
The figure visually demonstrates the good match of 
measurement with simulation (i.e., the blue line is 
measured temperature and the red line is calculated, 
the simulated temperature respectively). The tem-
perature T8 inside the coil was also measured by 
the thermocouple. This temperature was compared 
with the modeled one. The truth of the conformity is 
also expressed quantitatively by the MAPE, which 

in this case was only 2.19% and the maximum dif-
ference was 23.80°C, which was found only during 
heating (i.e., at time 600 min). 

Result of soft-sensing based on SVR

Matlab Statistics, and Machine Learning tool-
box [25] were used for SVR modeling of tempera-
tures from batch annealing. A function fitrsvm(…) 
was used to create the SVR model and function 

Table 2. Soft-sensor performance in real annealing 
measurement

Exp. 
#

Temp.
MAPE

(%)
Max. difference

(°C)

1
T11

(Coil #4)
5.40 48.97

2
T2

(Coil #1)
5.03 47.07

2
T8

(Coil #3)
2.19 23.80

 
Fig. 10. Placement of thermocouples on four coils

 
Fig. 11. Comparison of simulated and measured temperature T8 on coil #3
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predict (…) for the prediction. As an optimization 
method to solve (15) and (16) a Sequential Mini-
mal Optimization (SMO) was used. 

Several SVR models were created for temper-
atures modeling, i.e., for estimation of inner tem-
peratures T2, T3 and T4 for laboratory annealing. 
Similarly, separate machine models were created 
to estimate the inner temperatures T2, T8, and 

T11 for real annealing. In both cases, the bound-
ary temperatures measured by thermocouple were 
considered as input observations and selected in-
ner temperatures as targets. The target tempera-
tures were also measured by thermocouples to 
create input-output pairs and train SVR models. 
Overall, four laboratory and two real annealing 
experiments (measurements) were modeled.

 
Fig. 12. Comparison of temperatures of Exp. #2 measured by thermocouples, estimated by PC mode of heat 

conduction (Heat Transfer) and estimated by SVR (i.e., using Matlab) (a.) Measurement of T2 where SVR model 
was trained only using observations of Exp. #2, b.) Measurement of T2 where the SVR model was trained using 

joined observations of Exp. #1, #3 and #4, c.) Measurement of T3 where SVR model was trained only using 
observation of Exp. #2, d.) Measurement of T3 where SVR model was trained using joined observations of Exp. 
#1, #3 and #4, e.) Measurement of T4 where SVR model was trained only using observation of Exp. #2, f.) Mea-

surement of T4 where SVR model was trained using joined observations of Exp. #1, #3 and #4)
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Seeing that the laboratory experiments were 
very similar and performed on the same coil, the 
strategy of the SVR models performance evalua-
tion was proposed. In the laboratory experiments 
(measurements), the SVR models were trained 
and tested on the same data (i.e., from the same 
measurement). For example, when the model 
was trained on the data set of experiment #1, 
testing of this model was also performed on this 
data set. Moreover, each model for the selected 
experiment was trained using the data from other 
experiments that were joined to one training data 
set. The testing of that model was performed on 
the data set (i.e., inner temperatures) that was 
not used in training. For example when a se-
lected model was trained on the joined data set 
of experiments #2, #3 and #4, it was tested on 
experiment #1. This rule was applied to investi-
gate the performance of the trained models (i.e., 
models of inner temperatures. In the modeling 
of laboratory data, only linear kernel was used, 
due to better-fitting of SVR models in compari-

son with the Gaussian kernel. The results of the 
model performance for individual laboratory ex-
periments and models are shown in Table 3. The 
values in parenthesis with an asterisk represent 
the results of model testing on the training data. 
Figure 12 shows the modeling results from ex-
periment #2. This figure shows the comparison 
of inner temperatures measured by thermocouple 
and temperatures estimated by SVR model and 
by the Heat Transfer application.

In modeling of inner temperature on the real 
coil, this rule of models evaluation was not applied 
due to the difference in experiments. Two real 
measurements (experiments) from real annealing 
were investigated. In the first experiment, four 
coils were bedded on each other and in the second 
experiment, only three coils were bedded on the 
stand for annealing. Moreover, the coils have dif-
ferent dimensions in individual experiments. 

Seeing that in the real annealing experiments 
(measurements) the SVR models were trained 
and tested on the same data (i.e., from the same 

 
Fig. 13. Comparison of the temperatures measured by thermocouples, estimated by heat conduction model (Heat 
Transfer program) and estimated by SVR in real annealing experiment: a.) Exp. #2, T2 measurement, linear ker-
nel, training and testing on Exp #2. b.) Exp. #2, T2 measurement, Gaussian kernel, training and testing on Exp 
#2. c.) Exp #2, T8 measurement, linear kernel, training and testing on Exp. #2. d.) Exp. #2, T8 measurement, 

Gaussian kernel, training and testing on Exp #2
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measurements), but two different kernel functions 
were investigated (i.e., linear and Gaussian). The 
results of model performance for individual ex-
periments and models are shown in Table 4.

The results show that better performance of 
SVR model was obtained in Experiment #2 and 
temperature T8. In SVR modeling, utilization of 
Gaussian kernel function reached the best results.

Figure 13 shows the modeling results from the 
measuring experiment #2 of real annealing. This 
figure shows a comparison of inner temperatures 
measured by thermocouple and temperatures es-

timated by the SVR model and by Heat Transfer 
application (see previous subsections).

While comparing the results, it can be seen 
that an analytical solution based on non-station-
ary heat conduction is more accurate that SVR. 
It applies to both laboratory measurements and 
operational measurements. 

The second approach based on SVR gave dif-
ferent results in testing of the SVR models on the 
training data of the same measurement (i.e., SVR 
models were tested only on data on which they 
were trained) and in testing models trained on 
different data set (i.e., from the various measur-
ing experiments). In general, the SVR model well 
approximates the training data (see Table 3), i.e., 
values in parenthesis. When testing SVR models 
on data (measuring experiments) that were not 
included in the training data set, the models per-
formance was lower (see values not in the brack-
ets in the same tables). The performance of SVR 
models can be increased when the training dataset 
will be extended to more batch annealing experi-
ments. This investigation was not possible in the 
operational measurements, because there were no 
more similar measurements available for training. 
The results of the simulation of SVR models on 
the operational measurements show that the use 
of the Gaussian kernel functions gave better ac-
curacy (see Table 4). In this case, the SVR models 
were tested only on the data on which they were 
trained. The results show how the SVR models 
accurately approximate the operational data.

CONCLUSIONS

The existence of a soft-sensor as a measur-
ing system will allow improving the product 
quality and reducing the energy consumption in 
energy-intensive technologies such as industrial 
furnace heating technology. The information on 
the temperatures in the annealed coil is essential 
to control the annealing plant and increase the 
production effectiveness. Because inner tem-
peratures cannot be measured at each anneal-
ing, soft sensors based on mathematical models 
are being developed to cope with this problem. 
In this paper, soft sensing based on the rules of 
non-stationary heat conduction and support vec-
tor regression was investigated for the batch an-
nealing process. Both approaches utilize the mea-
sured surface temperatures to estimate the inner 
temperature field. Moreover, the second approach 

Table 3. SVR model performance with linear kernel 
(*testing on training data)

Exp. 
#

Temp.
MAPE 

(%)
Max. difference 

(°C)

1

T2

13.13
(10.17)*

32.51
(28.91)*

T3

19.40
(10.23)*

62.63
(28.16)*

T4

12.48
(8.99)*

43.31
(30.33)*

2

T2

7.2
(7.03)*

32.86
(26.79)*

T3

8.26
(6.08)*

60.93
(23.99)*

T4

7.95
(7.55)*

39.49
(26.68)*

3

T2

7.36
(10.47)*

29.92
(29.73)*

T3

11.43
(8.29)*

27.21
(30.90)*

T4

6.05
(10.23)*

24.45
(32.54)*

4

T2

8.63
(9.41)*

31.45
(28.79)*

T3

13.09
(8.79)*

27.50
(30.74)*

T4

5.77
(9.77)*

19.03
(32.62)*

Table 4. SVR model performance in real annealing

Exp.
#

Temp. Kernel 
function

MAPE 
(%)

Max. difference 
(%)

1
T11

(Coil #4)
Linear 25.07 113.34

Gauss 14.56 43.15

2
T2

(Coil #1)
Linear 28.79 215.80

Gauss 14.77 35.64

2
T8

(Coil #3)
Linear 27.33 210.57

Gauss 12.91 32.84
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has used the experimentally measured inner tem-
peratures to train the SVR models. Both meth-
ods gave interesting results, but the first one was 
more accurate. The main advantage of the first 
proposed method based on non-stationary heat 
conduction is that the information on inner tem-
peratures is not needed. However, the disadvan-
tage of this approach is the requirement of op-
timized thermophysical properties for the given 
steel. The advantage of the second approach is 
that the complicated knowledge on heat conduc-
tion is not necessary. Support vector regression 
uses only the measured inputs and outputs and 
trains the model, i.e., optimize the support vec-
tors based on training data. However, the main 
disadvantage is the requirement to measure these 
data and create a training data set (i.e., for vari-
ous annealing regimes or dimensions of coils, 
more experimental measurements of surface and 
inner temperatures are needed).

Although the second approach was less accu-
rate, it can provide a quick soft-sensing in moni-
toring system or serve as a complement for the 
analytical solution. Currently, the SVR is suc-
cessfully implemented in many programming 
languages (e.g., Matlab, Python, C#) as a stand-
alone library of Machine Learning. The proposed 
program of the first approach can be used online 
or offline for soft-sensing temperature. The pro-
gram also includes the algorithms for the calcu-
lation of thermal flows and algorithms for adap-
tation of thermo-physical parameters λ, c, and ρ. 
These algorithms are described in detail by the 
authors of this paper in other published papers. 
The presented approaches of soft-sensing were 
verified under laboratory conditions on a steel 
coil model and also on the measurements from 
real annealing plant. Further research will focus 
on soft-sensing of the surface temperatures.
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