PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Application of the diagnostic plot in estimation of the skin friction in turbulent boundary layer under an adverse pressure gradient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the problem of determining friction velocity in wallbounded flows affected by an adverse pressure gradient (APG). In the work of Niegodajew et al. [22] the corrected Clauser chart method (CCCM) for such flow conditions was proposed. This approach utilises the mean velocity profiles and turbulence intensity profiles to accurately estimate the friction velocity. In another work, Drózdz et al. [27] presented a modified version of the diagnostic-plot scaling (DPS) which allows for direct reconstruction of turbulence intensity profiles based on the local mean velocity profile, even when the flow is affected by a strong pressure gradient. This paper is aimed at verifying whether, when combining both of these methods (i.e. DPS and CCCM), the friction velocity can be accurately determined for APG flow conditions and one can possibly take advantage from both methods. The analysis revealed that the new approach is able to predict the friction velocity with uncertainty less than 5% for all the considered cases for the Clauser–Rotta parameter β < 17. Lastly, DPS-CCCM was also confronted with two empirical approaches (from available literature) allowing for estimation of the friction velocity under APG conditions. The performance of DPS-CCCM was found to be better than the ones of two other empirical approaches.
Rocznik
Strony
201--215
Opis fizyczny
Bibliogr. 40 poz., rys. kolor.
Twórcy
  • Czestochowa University of Technology, Department of Thermal Machinery, Armii Krajowej 21, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Department of Thermal Machinery, Armii Krajowej 21, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Department of Thermal Machinery, Armii Krajowej 21, 42-200 Czestochowa, Poland
Bibliografia
  • 1. L.H. Tanner, L.G. Blows, A study of the motion of oil films on surfaces in air flow, with application to the measurement of skin friction, Journal of Physics E: Scientific Instruments, 9, 194–202, 1976, https://doi.org/10.1088/0022-3735/9/3/015.
  • 2. N. Hutchins, K.S. Choi, Accurate measurements of local skin friction coefficient using hot-wire anemometry, Progress in Aerospace Sciences, 38, 421–446, 2002, https://doi.org/10.1016/S0376-0421(02)00027-1.
  • 3. E.-S. Zanoun, L. Jehring, C. Egbers, Three measuring techniques for assessing the mean wall skin friction in wall-bounded flows, Thermophysics and Aeromechanics, 21, 179–190, 2014, https://doi.org/10.1134/S086986431402005X.
  • 4. J.H. Preston, The determination of turbulent skin friction by means of pitot tubes, The Journal of the Royal Aeronautical Society, 58, 109–121, 1954, https://doi.org/10.1017/s0368393100097704.
  • 5. V.C. Patel, Calibration of the Preston tube and limitations on its use in pressure gradients, Journal of Fluid Mechanics, 23, 185–208, 1965, https://doi.org/10.1017/S0022112065001301.
  • 6. H. Nagib, C. Christophorou, J.-D. Ruedi, P. Monkewitz, J. Osterlund, S. Gravante, K. Chauhan, I. Pelivan, Can we ever rely on results from wall-bounded turbulent flows without direct measurements of wall shear stress?, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004, https://doi.org/10.2514/6.2004-2392.
  • 7. J.D. Ruedi, H. Nagib, J. Österlund, P.A. Monkewitz, Unsteady wall-shear measurements in turbulent boundary layers using MEMS, Experiments in Fluids, 36, 2004, 393–398, https://doi.org/10.1007/s00348-003-0666-1.
  • 8. A.N. Menendez, B.R. Ramaprian, On the measurement of skin friction in unsteady boundary layers using a flush-mounted hot-film gage, Journal of Fluid Mechanics, 161, 139–159, 1984.
  • 9. J.D. Ruedi, H. Nagib, J. Österlund, P.A. Monkewitz, Evaluation of three techniques for wall-shear measurements in three-dimensional flows, Experiments in Fluids, 35, 389–396, 2003, https://doi.org/10.1007/s00348-003-0650-9.
  • 10. J.E. Mitchell, T.J. Hanratty, A study of turbulence at a wall using an electrochemical wall shear-stress meter, Journal of Fluid Mechanics, 26, 199–221, 1966, https://doi.org/10.1017/S0022112066001174.P. Niegodajew et al. 213
  • 11. J. Havlica, D. Kramolis, F. Huchet, A revisit of the electro-diffusional theory for the wall shear stress measurement, International Journal of Heat and Mass Transfer, 165, 2021, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120610.
  • 12. A. Segalini, J.-D. Rüedi, P.A. Monkewitz, Systematic errors of skin-friction measurements by oil-film interferometry, Journal of Fluid Mechanics, 773, 298–326, 2015, https://doi.org/doi:10.1017/jfm.2015.237.
  • 13. S. Rezaeiravesh, R. Vinuesa, M. Liefvendahl, P. Schlatter, Assessment of uncertainties in hot-wire anemometry and oil-film interferometry measurements for wallbounded turbulent flows, European Journal of Mechanics, B/Fluids, 72, 57–73, 2018, https://doi.org/10.1016/j.euromechflu.2018.04.012.
  • 14. R. Örlü, R. Vinuesa, Instantaneous wall-shear-stress measurements: Advances and application to near-wall extreme events, Measurement Science and Technology, 31, 2020, https://doi.org/10.1088/1361-6501/aba06f.
  • 15. F.H. Clauser, The turbulent boundary layer, Advances in Applied Mechanics, 4, 1–51, 1956, https://doi.org/10.1016/S0065-2156(08)70370-3.
  • 16. R.F. Blackwelder, J.H. Haritonidis, Scaling of the bursting frequency in turbulent boundary layers, Journal of Fluid Mechanics, 132, 87–103, 1983, https://doi.org/10.1017/S0022112083001494.
  • 17. R. Madad, Z. Harun, K. Chauhan, J.P. Monty, I. Marusic, Skin friction measurement in zero and adverse pressure gradient boundary layers using oil film interferometry, 17th Australian Fluid Mechanics Conference, 2010.
  • 18. S.A. Dixit, O.N. Ramesh, Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers, Experiments in Fluids, 47, 1045–1058, 2009, https://doi.org/10.1007/s00348-009-0698-2.
  • 19. A. Dróżdż, W. Elsner, D. Sikorski, Skin friction estimation in a strong decelerating flow, Journal of Theoretical and Applied Mechanics, 56, 365–376, 2018, https://doi.org/10.15632/jtam-pl.56.2.365.
  • 20. A. Bobke, R. Vinuesa, R. Örlü, P. Schlatter, History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers, Journal of Fluid Mechanics, 820, 667–692, 2017, https://doi.org/10.1017/jfm.2017.236.
  • 21. A. Dróżdż, W. Elsner, An experimental study of turbulent boundary layers approaching separation, International Journal of Heat and Fluid Flow, 68, 337–347, 2017, https://doi.org/10.1016/j.ijheatfluidflow.2017.10.003.
  • 22. P. Niegodajew, A. Dróżdż, W. Elsner, A new approach for estimation of the skin friction in turbulent boundary layer under the adverse pressure gradient conditions, International Journal of Heat and Fluid Flow, 79, 108456, 2019, https://doi.org/10.1016/ j.ijheatfluidflow.2019.108456.
  • 23. S. Deck, N. Renard, R. Laraufie, P.-É. Weiss, Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650, Journal of Fluid Mechanics, 743, 202–248, 2014, https://doi.org/10.1017/jfm.2013.629.
  • 24. I. Marusic, R. Mathis, N. Hutchins, High Reynolds number effects in wall turbulence, International Journal of Heat and Fluid Flow, 31, 418–428, 2010, https://doi.org/10.1016/j.ijheatfluidflow.2010.01.005.214
  • 25. J.P. Monty, Z. Harun, I. Marusic, A parametric study of adverse pressure gradient turbulent boundary layers, International Journal of Heat and Fluid Flow, 32, 575–585, 2011, https://doi.org/10.1016/ j.ijheatfluidflow.2011.03.004.
  • 26. A. Dróżdż, P. Niegodajew, M. Romańczyk, V. Sokolenko, W. Elsner, Effective use of the streamwise waviness in the control of turbulent separation, Experimental Thermal and Fluid Science, 121, 110291, 2021, https://doi.org/10.1016/j.expthermflusci.2020.110291.
  • 27. A. Dróżdż, P. Niegodajew, W. Elsner, R. Vinuesa, R. Örlü, P. Schlatter, A description of turbulence intensity profiles for boundary layers with adverse pressure gradient, European Journal of Mechanics B/Fluids, 84C, 470–477, 2020, https://doi.org/https://doi.org/10.1016/j.euromechflu.2020.07.003.
  • 28. P.H. Alfredsson, R. Örlü, A. Segalini, A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows, European Journal of Mechanics B/Fluids, 36, 167–175, 2012, https://doi.org/10.1016/j.euromechflu.2012.03.015.
  • 29. N. Hutchins, T.B. Nickels, I. Marusic, M.S. Chong, Hot-wire spatial resolution issues in wall-bounded turbulence, Journal of Fluid Mechanics, 635, 103, 2009, https://doi.org/10.1017/S0022112009007721.
  • 30. K.O. Felsch, D. Geropp, A. Walz, Method for turbulent boundary layer prediction, AFOSR-LFP-Stanford Conference, 1, 170, 1968.
  • 31. D.L. Whitfield, T.W. Swafford, J.L. Jacocks, Calculation of turbulent boundary layers with separation, reattachment, and viscous-inviscid interaction, AIAA Paper, 19, 1315–1322, 1981.
  • 32. Y. Nagano, T. Tsuji, T. Houra, Structure of turbulent boundary layer subjected to adverse pressure gradient, International Journal of Heat and Fluid Flow, 19, 563–572, 1998, https://doi.org/10.1016/S0142-727X(98)10013-9.
  • 33. A. Dróżdż, W. Elsner, S. Drobniak, Scaling of streamwise Reynolds stress for turbulent boundary layers with pressure gradient, European Journal of Mechanics B/Fluids, 49, 137–145, 2015, https://doi.org/http://dx.doi.org/10.1016/j.euromechflu.2014.08.002.
  • 34. S.H. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifi, D.S. Henningson, Direct numerical simulation of the flow around a wing section at moderate Reynolds number, International Journal of Heat and Fluid Flow, 61, 117–128, 2016, https://doi.org/10.1016/j.ijheatfluidflow.2016.02.001.
  • 35. A.G. Gungor, Y. Maciel, M.P. Simens, J. Soria, Scaling and statistics of largedefect adverse pressure gradient turbulent boundary layers, International Journal of Heat and Fluid Flow, 59, 109–124, 2016, https://doi.org/10.1016/j.ijheatfluidflow.2016.03.004.
  • 36. J.H. Lee, Large-scale motions in turbulent boundary layers subjected to adverse pressure gradients, Journal of Fluid Mechanics, 810, 323–361, 2017, https://doi.org/10.1017/jfm.2016.715.
  • 37. R.J. Volino, Non-equilibrium development in turbulent boundary layers with changing pressure gradients, Journal of Fluid Mechanics, 897, A2, 2002, https://doi.org/10.1017/jfm.2020.319.
  • 38. C. Sanmiguel Vila, R. Vinuesa, S. Discetti, A. Ianiro, P. Schlatter, R. Örlü, Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers, Experimental Thermal and Fluid Science, 112, 109975, 2020, https://doi.org/10.1016/j.expthermflusci.2019.109975.
  • 39. R. Mathis, N. Hutchins, I. Marusic, Large-scale amplitude modulation of the smallscale structures in turbulent boundary layers, Journal of Fluid Mechanics, 628, 311–337,2009, https://doi.org/10.1017/S0022112009006946.
  • 40. J.M. Österlund, A. V. Johansson, H.M. Nagib, M.H. Hites, A note on the overlapregion in turbulent boundary layers, Physics of Fluids, 12, 1–4, 2000, https://doi.org/10.1063/1.870250.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d238210-e726-4875-8d0b-bbfb3e163845
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.