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VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM 

FOR IMAGING DATA 

Jolanta Podolszańska  
Częstochowa University of Technology, Częstochowa, Poland 

Abstract. This paper presents the research results on the design of a three-dimensional head phantom for cone beam projection. The head model is based 

on a Shepp-Logan mathematical head model, which is used to simulate the operation of the CT scanner. The model is then compared with the reference 

data for structural similarity, reasoning, and shape. The geometric parameters of the obtained images are investigated. The reconstructed image 
is analyzed using the FDK method. The results show that the geometric parameters directly correlate with the number of projections. A mathematical 

framework of cone beam 3d reconstruction via the first derivative of the radon transform is presented. 
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WALIDACJA TRÓJWYMIAROWEGO FANTOMU GŁOWY DLA DANYCH OBRAZOWYCH 

Streszczenie. W artykule przedstawiono wyniki badań nad projektem trójwymiarowego fantomu głowy do projekcji wiązki stożkowej. Model głowy jest 

oparty na matematycznym modelu głowy Shepp-Logan, który jest używany do symulacji działania skanera CT. Model jest następnie porównywany 
z danymi referencyjnymi pod kątem podobieństwa strukturalnego, rozumowania i kształtu. Badane są parametry geometryczne uzyskanych obrazów. 

Zrekonstruowany obraz jest analizowany przy użyciu metody FDK. Wyniki pokazują, że parametry geometryczne mają bezpośredni związek z liczbą 
projekcji. Przedstawiono matematyczne ramy rekonstrukcji 3D wiązki stożkowej za pomocą pierwszej pochodnej transformaty radonowej. 

Słowa kluczowe: tomografia komputerowa, rekonstrukcja FDK, trójwymiarowy matematyczny model fantomu, fantom Shepp-Logan 

Introduction 

Using phantoms as a standard for head imaging simulation 

and reconstruction has allowed for examination without 

interference by the human body, which is crucial to avoid 

potential damage caused by X-rays. Specithe finally, the Shepp-

Logan phantom was used to reconstruct magnetic resonance 

imaging (MRI) and for k-space simulation. However, the CT 

version is the only one to include the radiation mitigation 

properties of the head and brain. The phantom version of the MRI 

was not adapted to MR physics, so comparisons and validations 

of the model are not conducted based on various studies. 

This work focuses exclusively on the CT-adapted phantom 

and aims to present the existing implementations of the Shepp-

Logan model and its modifications for simulation purposes. 

1. 3D Cone-Beam Geometry  

In CT, spiral scanning uses a specific activation protocol. 

This involves rotating the gantry simultaneously as the bed moves 

with the patient. The hypothesis is that the object scanning will 

remain in place, but this happens only if the source follows 

the spiral trajectory. In 2D geometry, the source trajectory 

is represented by vectors. 

𝑥𝑓𝑜𝑐𝑎𝑙 =  (
𝐷1𝑠𝑖𝑛𝛽

−𝐷1𝑐𝑜𝑠𝛽
𝑧𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 

) 

The spiral scanning standard can express the source trajectory 

by the formula. 

𝑧𝑓𝑜𝑐𝑎𝑙 =  [𝑧𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑠
; 𝑧𝑠𝑡𝑜𝑝_𝑝𝑜𝑠 = 𝑧𝑠𝑡𝑎𝑟𝑡

𝑑 ∙  𝛽𝑠𝑡𝑜𝑝

2𝜋
] 

For the reconstruction of spiral scanning, interpolation 

methods are used. A gantry with a four-angular range is required 

for complete scanning reconstruction to create a complete 

fan beam sinogram. However, the X-ray fan beam passes through 

these two segments at the beginning and end of the spiral path 

with a length of d at each angle at least once.  

The inversion of the three-dimensional Radon transform 𝑅3 

is obtained using an equation. 

𝑓(𝑥) =  −
1

8𝜋
 𝑅3 [

𝜕2

𝜕𝑟2 𝑟(𝑟𝛼)] 

The application of the Radon transformation equation in 3D 

has been studied by scientists for decades. Reconstruction 

of projection data obtained in cone-beam geometry is a priority, 

as it is the geometry used in volumetric tomography with 2D 

detectors. A correct reconstruction is only possible if all planes 

intersect the radiation source's path at least once, later called 

the Tuy-Smith data sufficiency condition [6]. Based on Tuy's 

formula, Grangeat proposed a complete solution: to use 

the radiation derivative of the three-dimensional Radon 

transformation as an extract from the linear integrals extracted 

from the geometry of the cone beam. However, this solution 

is associated with the problem of numerical instability [7]. 

It is worth mentioning that accurate 3D reconstruction has 

limited practical application in the real world. The most 

commonly used source trajectory for most CT scanners is circular 

motion, which does not satisfy the Tuy-Smith sufficiency 

condition. To cope with the incompleteness of the data, 

researchers have worked on various trajectories; among them, 

only the circle and the spiral with constant pitch and radius have 

found significant applications. Therefore, approximate rather than 

exact algorithms are the most widely used in practical cone beam 

reconstruction. The most commonly used method for approximate 

cone beam reconstruction was derived by Feldkamp, Davis, 

and Kress (Feldkamp 1984 [8]). 

1.1. FDK Method 

In 1984, Feldkamp, Davis, and Kress introduced an algorithm 

for cone beam circular tomography reconstruction called 

the approximation method. This method is named so because 

the reconstructed result will differ slightly from the actual object, 

no matter how high the measurement resolution is. Despite 

this, the algorithm is favored for its simplicity and is widely used 

for cone beam reconstruction. Unlike the other methods, the FDK 

algorithm is unique in handling truncated data in the longitudinal 

direction. Initially designed for planar detectors, the FDK 

algorithm requires pre-weighting factors that depend on fan 

and cone angles and splicing with a ramp filter. 

𝑝̅𝐹(𝛽, 𝑎, 𝑏) = (
𝑅

√𝑅2 + 𝑎2 + 𝑏2 
𝑝𝐹(𝛽, 𝑎, 𝑏)) ∗ 𝑔𝑃(𝑎) 
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The pre-weighted and filtered projections are back-projected 

to the reconstruction volume. 

𝑓𝐹𝐷𝐾(𝑥, 𝑦, 𝑧) =  ∫
𝑅2

𝑈(𝑥, 𝑦, 𝛽)
 (β, a (x, y, β), b(x, y, z, β)) dβ)

2𝜋

0

 

where: 

𝑏(𝑥, 𝑦, 𝑧, 𝛽) = 𝑧
𝑅

𝑅 + 𝑥 cos 𝛽 + 𝑦 sin 𝛽
 

When dealing with discrete cases, the sum of projection angles 

replaces the integral. The points in spiral geometry share 

similarities with those in the fan beam, with a longitudinal 

coordinate added to account for the detector's axial extension. 

The Feldkamp algorithm operates under the premise that 

the acquisition geometry of a conical beam should not differ from 

that of a multiplanar fan beam. This algorithm suits a planar 

detector system, where projection data can be interpolated onto 

a Cartesian grid. In contrast, Schaller's 1998 paper suggests 

that the algorithm should not filter along straight lines but rather 

along curved curves on a cylindrical detector. This method's 

calculation is quite similar to the primary FDK method, starting 

with ramp filtering. 

𝑝̅ (𝛽, 𝛾, 𝑞) =  (cos 𝛾
𝑅

√𝑅2 + 𝑞2
𝑝(𝛽, 𝛾, 𝑞)) ∗ 𝑔(𝑎) 

The FDK algorithm utilizes a filtered approach to solve 

reconstruction tasks using computation efficiently. Due to its 

effectiveness, it has been widely adopted in commercial medical 

scanners and remains a leading technique in modern CT. 

2. Two-dimensional Shepp-Logan mathematical 

head model 

The two-dimensional Shepp-Logan mathematical head model 

was developed in 1974 [1] to simulate head and brain image 

reconstruction in CT and projection reconstruction. To mimic 

the head's geometric and X-ray attenuation properties, the model 

used ten ellipses (table 1) of varying size (grey levels) 

and material density. 

Table 1. A function describing a phantom as the sum of 10 ellipses inside a 22 

square 

No. 

ellipse 

Distance from the 

center of the image 
x-axis y-axis Theta Greyscale 

1 (0, 0) 0.69 0.92 0 2 

2 (0, -0.0184) 0.66 0.87 0 -0.98 

3 (0.22, 0) 0.11 0.31 -18° -0.02 

4 (-0.22, 0) 0.16 0.41 18° -0.02 

5 (0, 0.35) 0.21 0.25 0 0.01 

6 (0, 0.1) 0.046 0.046 0 0.01 

7 (0, -0.1) 0.046 0.046 0 0.01 

8 (-0.08, -0.605) 0.0446 0.023 0 0.01 

9 (0, 0.605) 0.023 0.023 0 0.01 

10 (0.06, - 0.605) 0.023 0.046 0 0.01 

 

The original projection number was 180160, while 

the current image resolution is 256256 or 512512. 

 

Fig. 1. Sheep-Logan mathematical phantom with ten ellipses source: own 

implementation in Python language 

3. Three-dimensional Sheep-Logan 

mathematical head model 

In 1980, the Sheep-Logan phantom was updated with 

17 ellipsoids to accommodate three-dimensional acquisition 

images and included new anatomical structures like ears, eyes, 

nose, and mouth. However, during the latter part of the 1980s, 

the 3D phantom was simplified to just ten ellipsoids by removing 

six anatomical regions and the blood clot region, previously 

named the subdural hematoma area. In 1994, the phantom 

was enhanced again by adding two tumor regions, bringing 

the total ellipsoids to 12. 

3D head phantoms in imaging medicine research make 

it possible to simulate various clinical conditions, directly 

improving imaging techniques and treatment planning. 

For phantoms to be helpful in a clinical setting, they must 

be carefully validated for their similarity to accurate imaging data. 

Researching the effectiveness of reconstruction algorithms  

ithout testing them on the patient, directly exposing him to a high 

radiation dose, is challenging. Algorithms must undergo validation 

testing before being put into clinical use. Therefore, engineers 

responsible for reconstruction algorithms work mainly 

on computer simulations that mimic the operation of an accurate 

CT scanner [2]. 

Physical phantoms have been developed that fully provide 

a comprehensive evaluation of image acquisition. The phantom 

presented in three-dimensional space is an evolution of the two-

dimensional phantom. It has an extension in the form 

of an additional dimension, represented by mathematical functions 

(table 2). 

Table 2. 3D phantom description function, version with ten ellipses 

No. 

ellipse 
x-axis y-axis z-axis a b c α 

Greys

cale 

1 0 0 0 6.9 9.20 9 0 2 

2 0 0 0 0.62 8.74 8.8 0 0.98 

3 -0.22 0 -0.25 0.41 0.16 0.21 -108 0.02 

4 2.2 0 -2.5 3.10 1.10 2.2 -72 0.02 

5 0 3.5 -2.5 2.10 2.50 5 0 0.01 

6 0 1 -2.5 0.46 0.46 0.46 0 0.01 

7 -0.8 -6.5 -2.5 0.46 0.23 0.20 0 0.01 

8 0.6 -6.5 -2.5 0.46 0.23 0.20 90 0.01 

9 0.6 -1.05 6.25 0.56 0.40 1 90 0.01 

10 0 1 6.25 0.56 0.56 1 0 0.01 

4. Methods 

A set of different methods was used to validate the 3D head 

phantom. A three-dimensional model of the head phantom 

was created, then compared with reference data for structural 

similarity, reasoning, and shape. In addition, a qualitative 

and quantitative analysis of the phantom was performed 

by comparing the results obtained using accurate imaging data. 

The physical CT scanner collects raw data during a patient's 

scan. To replicate this process, a three-dimensional Shepp-Logan 

model was utilized to generate data converted into raw data 

for a RAW extension. This extension is obtained when the scanner 

acquires data but has not yet undergone digital processing. 

A RAW image stores a broader range of dynamic and gray level 

scales than the final image format, containing most of the original 

image's information. The simulation involves two essential 

components: the CT scanner and the console used by 

the electrobiology technicians. A simulation has been developed 

to meet these requirements. 
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5. Results 

Researchers utilized a Python-designed simulation 

environment to conduct a study. They employed a spiral beam 

reconstruction algorithm and processed data from a virtual head 

phantom into raw data. This data was then utilized to reconstruct 

the object further. The simulation aims to replicate the function 

of a CT scanner, extracting the necessary parameters for image 

reconstruction. 

5.1. Raw data 

During a scan, the X-ray beam gathers raw data, including 

all measured detector signals. These signals are then calibrated 

to account for fluctuations in lamp power and beam hardening. 

The attenuation properties of each X-ray signal and its correlation 

with beam position are also considered. Mathematical procedures 

like filtered back projection are used to reconstruct the CT images 

from the raw data. Furthermore, a different filter can reconstruct 

additional planes and images later. The computer uses the raw 

data to map local attenuation within the studied section [4]. 

In the axial (transverse) plane, every image comprises a grid 

of data points assigned a number indicating the X-ray attenuation 

at a specific point on the human body. This number is essentially 

a scaled version of the X-ray attenuation of water, referred 

to as a Hounsfield unit. The air is also accounted for through 

normalization. A CT number of -1,000 HU is assigned, and water 

is posted as 0 HU. 

Modern CT scanners typically have a matrix size of 512512 

pixels. The size of each pixel is determined by the reconstructed 

field of view and the matrix size. In body applications, the pixel 

size is usually between 0.6–0.8 mm, while for the brain, 

it is approximately 0.5 mm. The pixel size varies for bone 

imaging, ranging from 0.3–0.5 mm. 

5.2. CT and console simulation in CT 

The simulation software is designed to incorporate Feldkamp-

type reconstruction from precomputed projection data. 

It's important to note that the spiral geometry parameters are fixed 

and cannot be altered during reconstruction. The geometry must 

remain consistent with the one used for generating the pre-

calculated projection data set, which will be loaded through 

a specific method. To better understand the parameters used 

during the reconstruction, refer to the image in (figure 2). 

 

Fig. 2. Simulation parameters in simulation software 

For the simulation, each axis of the voxel size measures 2 mm. 

A coarse reconstruction grid will be utilized to obtain 

the projection in a reasonable time. The reconstruction begins with 

a sinogram, a 3D array of line integrals. The shape of the 

collection is based on the 2D reconstruction, meaning the first two 

dimensions are used in the 2D sinograms. When using cone beam 

geometry, the projection data is referred to as radiographs 

of a 3D object. Expanding the sinogram with an additional 

dimension is all that's necessary to update it. Volumetric or spatial 

reconstruction is another term for 3D reconstruction. 

5.3. Head model visualization 

To properly simulate on the console, we must input the data 

for the reference object (phantom) and the pre-calculated 

projection data. Specifically, we are working with a 3D phantom 

of the Shepp-Logan head, which has been sampled 

on a 256^3 grid. It is crucial to transpose the data in the correct 

order to ensure accurate results in the subsequent steps. 

For this solution, a Ram-Lak filter was utilized by generating 

a 3D array that included all the necessary copies of the 1D Ram-

Lak filter. This array was then used to filter the projection data 

in the frequency domain. Like the western beam, weighting 

factors were computed for the projection data just before 

implementing the Ram-Lak filter. To accomplish this, a grid 

of detector coordinate values was established. These weighting 

factors will be used on the original projection data. 

a)   b)  

c)  

Fig. 3. Filtering: a) weighting window, b) weighted projections, c) difference between 

original and weighted image 

In the next step, ramp filtering of the projections was 

performed. It is important to remember to properly arrange the 

input and output arrays so that the projection data is filtered line 

by line along the radial direction. 

a)   b)  

Fig. 4. Filtering: a) original model 3D Shepp-Logan, b) ramp filter applied 

to the model 

A back projection of the cone beam was made. In this way, 

it will be possible to make a single view of the filtered 

radiographs. We will first select a single picture from the (filtered) 

projection data and create the auxiliary variables needed 

to calculate the w_BP weighting factor. We will perform 

a two-dimensional interpolation associated with the back 

projection on the cone beam.  
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Fig. 5. Reconstruction with a limited number of projections 

After a full back projection, we choose a volume with fewer 

cross-sections so that the reconstruction time does not burden 

the average computer. The number of cross-sections can 

be modified if we have a computer with more computing power. 

Of course, with the change in the number of cross-sections, 

the coordinate grids and weighting factors should be recalculated 

to cope with the new volume size. 

 
 a) b) 

Fig. 6. Effect of reconstruction: a) without filtering, b) with filtering  

The image volume was displayed using the matplotlib package 

(Fig. 4). The artifacts are due to solid angular subsampling. Partial 

volumes were reconstructed. The actual image reconstruction may 

take 5 to 10 minutes. The effect of the model reconstruction 

is shown below (Fig. 6). 

6. Conclusions 

This paper presents the research results on the design 

of a three-dimensional phantom for cone beam projection. 

The research included creating a simulation environment 

for a three-dimensional Shepp-Logan and reconstructing 

the projection image using the FDK method. The paper presents 

a mathematical description of the head model and suggestions 

for the designed simulation. The experimental relationship 

between the geometric parameters of the obtained images 

was established. Various simulation parameters were investigated 

for the reconstructed image, including a photo with limited 

projections and a more significant number of forecasts. 

The simulation environment will be expanded in the future. 
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