PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical signatures of pervasive meteoric diagenesis of Early Miocene syn-rift carbonate platform, Red Sea, NW Saudi Arabia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different diagenetic environments have been recognized in the Early Miocene carbonate platform of Musayr Formation in the Red Sea rift area. Early marine diagenesis includes micritisation that occurs as thin envelope around skeletal and non-skeletal grains in low-energy mud dominated facies and isopachous fibrous calcite in high-energy grain-dominated facies. Pervasive meteoric water diagenesis resulted in cementation of the carbonates by coarse-crystalline blocky-drusy calcite and meniscus cements. Depletion of oxygen (avg. –9.08‰), carbon (avg. –1.6‰) isotopes and trace elements concentrations (avg. values of Fe: 1387 ppm; Mn: 1444 ppm; Sr: 419 ppm; Na: 1194 ppm) in conjunction with negative correlation between Mn2+ and oxygen isotope data suggest variable degrees of fluid-rock interactions and pervasive meteoric diagenesis. The formation of meteoric diagenesis in the Musayr Formation can be explained by two subsequent mechanisms: (1) the presence of meteoric lenses during the time of deposition might have been associated with active freshwater input from the hinterland (NE) due to fall in the relative sea level; (2) later uplift episode during Plio-Pleistocene may have also contributed to the pervasive meteoric diagenetic alterations of the carbonates of the Musayr Formation. The first mechanism is supported by the cement stratigraphy where the blocky-drusy cements postdate the meniscus cement. The latter mechanism seems to have more pronounced effect on the alteration of Musayr carbonate sequence by observing the occurence of late cements such as blocky calcite in most of the samples. The impact of meteoric diagenesis on the studied samples suggest that dissolution is less severe than cementation, hence the visible porosity is very low. Understanding the timing of meteoric diagenesis provides useful information about the reservoir quality distribution in syn-rift carbonate sequences.
Rocznik
Strony
239--250
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • King Fahd University of Petroleum & Minerals, Geosciences Department, 3126, P.O. Box 1400, Dhahran, Saudi Arabia
Bibliografia
  • 1. Aissaoui, D.M., Coniglio, M., James, N.P., Purser, B.H., 1986. Diagenesis of a Miocene reef-platform: Jebel Abu Shaar, Gulf of Suez, Egypt. In: Reef Diagenesis (eds. J.H. Schroeder and B.H. Purser): 112-31, Springer, Berlin.
  • 2. Allan, J.R., Matthews, R.K., 1977. Carbon and oxygen isotopes as diagenetic and stratigraphic tools: surface and subsurface data, Barbados, West Indies. Geology, 5: 16-20.
  • 3. Allan, J.R., Matthews, R.K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29: 797-817.
  • 4. Al-Ramadan, K., Dogan, A., Senalp, M., 2013. Sedimentology and diagenesis of the Miocene Nutaysh Member of the Burqan Formation in the Midyan Area, northwestern Saudi Arabia. Geological Quarterly, 57 (1): 165-174.
  • 5. Banner, J., G. Hanson, 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54: 3123-3137.
  • 6. Bathurst, R.G.C., 1975. Carbonate Sediments and Their Diagenesis. 2nd edition, Elsevier, New York.
  • 7. Batt, L.S., Montanez, I.P., Isaacson, P., Pope, M.C., Butts., S.H. Ablplanalp, J., 2008. Multicarbonate component reconstruction of mid-Carboniferous (Chesterian) seawater S13C. Palaeogeography, Palaeoclimatology, Palaeoecology, 256: 298-318.
  • 8. Bishop, J.W., Osleger, D.A., Montanez, I.P., Sumner, D.Y., 2014. Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan backreef: Yates Formation, Slaughter Canyon, New Mexico. AAPG Bulletin, 98: 1495-1519.
  • 9. Bosworth, W., Mcclay, K., 2001. Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: a synthesis. Mémoires du Muséum national d'histoire naturelle, 186: 567-606.
  • 10. Brand, U., 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chemical Geology, 204: 23-44.
  • 11. Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system - 1: trace elements. Journal of Sedimentary Research, 50: 1219-12136.
  • 12. Brand, U., Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system - 2: stable isotopes. Journal of Sedimentary Research, 51: 987-997.
  • 13. Clark, M.D., 1986. Explanatory Notes to the Geologic Map of the Al Bad' Quadrangle, sheet 28A, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map Series GM-81A, C, scale 1:250,000, with text, 46 p.
  • 14. Dickson J.A.D, 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 441-505.
  • 15. Dickson, J.A.D., Kenter, J.A.M., 2014. Diagenetic evolution of selected parasequences across a carbonate platform: Late Paleozoic, Tengiz Reservoir, Kazakhstan. Journal of Sedimentary Research, 84: 664-693.
  • 16. Fheed, A., Swierczewska, A. and Krzyżak, A., 2015. The isolated Wuchiapingian (Zechstein) Wielichowo Reef and its sedimentary and diagenetic evolution, SW Poland. Geological Quarterly, 59 (4): 762-780.
  • 17. Gross, M.G., 1964. Variations in the 18O/16O and 13C/12C ratios of diagenetically altered limestones in the Bermuda Islands. Journal of Geology, 72: 170-194.
  • 18. Heba, G., Prichonnet, G., El Albani, A., 2009. Meteoric diagenesis of Upper Cretaceous and Paleocene-Eocene shallow-water carbonates in the Kruja platform (Albania): geochemical evidence. Geologica Carpathica, 60: 165-179.
  • 19. Hughes, G.W., Johnson, R.S., 2005. Lithostratigraphy of the Red Sea Region. GeoArabia, 10: 49-126.
  • 20. Jadoul, F., Galli, M.T., 2008. The Hettangian shallow water carbonates after the Triassic/Jurassic biocalcification crisis: the Albenza Formation in the Western Southern Alps. Rivista Italiana di Paleontologia e Stratigrafia, 114: 453-470.
  • 21. Koeshidayatullah, A., Al-Ramadan, K., Collier, R., Hughes, G.W., 2016. Variations in architecture and cyclicity in fault-bounded carbonate platforms: Early Miocene Red Sea Rift, NW Saudi Arabia. Marine and Petroleum Geology, 70: 77-92.
  • 22. Land, L.S., Epstein, S., 1970. Late Pleistocene diagenesis and dolomitization, North Jamaica. Sedimentology, 14: 187-200.
  • 23. Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: Paleokarst (eds. N.P. James and P.W. Choquette): 58-80. Springer, Berlin.
  • 24. Major, R.P., 2014. Early Meteoric Diagenesis and Porosity Preservation: Stratigraphic Traps in Carbonate Grainstones. Conference paper in International Petroleum Technology Conference, Kuala Lumpur, Malaysia, https://www.onepetro.org/download/conference-paper/IPTC-17924-MS?id=conference-paper%2FIPTC-17924-MS
  • 25. Melim, L.A., Westphal, H., Swart, P.K., Eberli, G.P., Munnecke, A., 2002. Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Marine Geology, 185: 27-53.
  • 26. Meyers, W.J., Lohmann, K.C., 1985. Isotope geochemistry of regionally extensive calcite cement zones and ma tine compotnents in Mississippian limestones, New Mexico. SEPM Special Publication, 26: 223-239.
  • 27. Morrow, D.W., Mayers, I.R., 1978. Simulation of limestone diagenesis: a model based on strontium depletion. Canadian Journal of Earth Science, 15: 376-396.
  • 28. Rao, C.P., 1991. Geochemical difference between subtropical (Ordovician) temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
  • 29. Ronchi, P., Jadoul, F., Ceriani, A., Di Giulio, A., Scotti, P., Ortenzi, A., Previde Massara, E., 2011. Multistage dolomitization and distribution of dolomitized bodies in EarlyJurassic carbonate platforms (Southern Alps, Italy). Sedimentology, 58: 532-565.
  • 30. Saoudi, A., Khalil, B., 1986. Distribution and Hydrocarbon Potential of Nukhul Sediments in the Gulf of Suez. Proceedings of the Seventh Exploration Seminar, Cairo: 75-96.
  • 31. Smalley, P.C., Bishop, P.K., Dickson, J.A.D., Emery, D., 1994. Water-rock interaction during meteoric flushing of a limestone: implications for porosity development in karstified petroleum reservoirs. Journal of Sedimentary Research, 64: 180-189.
  • 32. Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62: 1233-1304.
  • 33. Tubbs, R.E., Fouda, A.H., Afifi, A.M., Raterman, N.S., Hughes, G.W. Fadolalkarem, Y.K., 2014. Midyan Peninsula, northern Red Sea, Saudi Arabia: Seismic imaging and regional interpretation. GeoArabia, 19: 165-184.
  • 34. Tucker, M.E., 1986. Formerly aragonitic lime stones associated with tillites in the late Proterozoic of Death Valley, California. Journal of Sedimentary Petrology, 56: 818-830.
  • 35. Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Publications.
  • 36. Videtich, P.E., 1982. Origin, marine diagenesis, and earlyfresh-water diagenesis of limestones and dolomites (Tertiary-Recent): stable isotopic, electron microprobe, and petrographic studies. Ph.D. thesis, Providence, Rhode Island, Brown University.
  • 37. Veizer, J., Demovic, R., 1974. Strontium as a tool in facies analysis. Journal of Sedimentary Petrology, 44: 93-115.
  • 38. Whitaker, F.F., Paterson, R.J., Johnston, V.E., 2006. Meteoric diagenesis during sea-level lowstands: evtdence from modern hydrochemical studies on northern Guam. Journal of Geochemical Exploration, 89: 420-423.
  • 39. Winefield, P.R., Nelson, C.S., Hodder, A.P.W., 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zealand Cenozoic Lime stone. Carbonates and Evaporites, 11: 19-31.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d1e4895-20ae-48ac-abc1-568826cbc8c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.