PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized compact finite diference scheme for frequency domain acoustic wave equation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Frequency-domain numerical simulation is the most important foundation of frequency-domain full-waveform inversion and reverse time migration. The accuracy of numerical simulation seriously afects the results of the seismic inversion and image. In this article, we develop an optimized compact finite diference scheme for acoustic wave equation in frequency domain to improve numerical simulation accuracy. For the sake of avoiding the extra memory and computational costs caused by solving the inverse of a pentadiagonal band matrix, we calculate the optimized compact finite diference discrete operator for the Laplace operator in the numerical simulation. Although the optimized compact finite diference scheme has only second-order formal accuracy, it has a spectral-like resolution feature. This method can significantly reduce the numerical dispersion and the numerical anisotropy. We fnd that the results of the optimized compact finite diference scheme agree well with the analytic solution according to accuracy analysis. Two numerical simulations are done to verify the theoretical analysis of the optimized compact finite diference scheme.
Czasopismo
Rocznik
Strony
1391--1402
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Institutions of Earth Science, Chinese Academy of Science, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Institutions of Earth Science, Chinese Academy of Science, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
Bibliografia
  • 1. Alford RM, Kelly KR, Boore DM (1974) Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 39:834–842. https://doi.org/10.1190/1.1440470
  • 2. Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite difference methods. Bull Seismol Soc Am 58:367–398
  • 3. Baysal E, Dan DK, Sherwood JWC (1983) Reverse time migration. Geophysics 48:1514–1524
  • 4. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200
  • 5. Chang WF, McMechan GA (1987) Elastic reverse-time migration. Geophysics 52:1365–1375. https://doi.org/10.1190/1.1442249
  • 6. Chen JB (2012) An average-derivative optimal scheme for frequency-domain scalar wave equation. Geophysics 77:T201–T210. https://doi.org/10.1190/geo2011-0389.1
  • 7. Chen JB (2014) A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method. Geophys Prospect 62:258–277
  • 8. Chen JB, Cao J (2016) Modeling of frequency-domain elastic-wave equation with an average-derivative optimal method. Geophysics 81:T339–T356. https://doi.org/10.1190/geo2016-0041.1
  • 9. Chu C, Stoffa PL (2012) An implicit finite-difference operator for the Helmholtz equation. Geophysics 77:97
  • 10. Hustedt B, Operto S, Virieux J (2004) Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling. Geophys J R Astron Soc 157:1269–1296
  • 11. Jo C, Shin C, Suh JH (1996) An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics 61:529–537
  • 12. Kim JW, Lee DJ (1996) Optimized compact finite difference schemes with maximum resolution. J AIAA 34:887–893
  • 13. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42
  • 14. Liu Y, Sen MK (2009) A practical implicit finite-difference method: examples from seismic modelling. J Geophys Eng 6:231
  • 15. Lysmer J, Drake LA (1972) A finite element method for seismology. Methods Comput Phys Adv Res Appl 11:181–216
  • 16. Marfurt KJ (1984) Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49:533–549
  • 17. Marfurt KJ, Shin CS (1989) The future of iterative modeling in geophysical exploration. Handb Geophys Explor Seism Explor 21:203–228
  • 18. McMechan GA (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31:413–420
  • 19. Mora P (1987) Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 52:1211–1228
  • 20. Operto S, Virieux J, Amestoy P, Giraud L, L’Excellent JY (2007) 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72:195
  • 21. Pratt RG (1990) Frequency-domain elastic wave modeling by finite differences: a tool for crosshole seismic imaging. Geophysics 55:626–632
  • 22. Pratt RG, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part I: Acoustic wave-equation method. Geophys Prospect 38:287–310
  • 23. Pratt RG, Shin C, Hick GJ (1998) Gauss–Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys J Int 133:341–362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  • 24. Shi P, Angus D, Nowacki A, Yuan S, Wang Y (2018) Microseismic full waveform modeling in anisotropicmedia with moment tensor implementation. Surv Geophys 39:567–611. https://doi.org/10.1007/s10712-018-9466-2
  • 25. Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173:922–931
  • 26. Shin C, Sohn H (1998) A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics 63:289–296. https://doi.org/10.1190/1.1444323
  • 27. Tang X, Liu H, Zhang H, Liu L, Wang Z (2015) An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2D constant density media. Geophysics 80:T211–T221. https://doi.org/10.1190/geo2014-0124.1
  • 28. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266
  • 29. Virieux J (1984) SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49:1933–1942. https://doi.org/10.1190/1.1441605
  • 30. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51:889–901. https://doi.org/10.1190/1.1442147
  • 31. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26
  • 32. Whitmore ND (1983) Iterative depth migration by backward time propagation. Seg Tech Program Expand Abstr 2:646
  • 33. Yuan S, Wang S, Sun W, Miao L, Li Z (2014) Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation. Explor Geophys 45:94–104. https://doi.org/10.1071/EG13066
  • 34. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84:R149–R164. https://doi.org/10.1190/geo2017-0643.1
  • 35. Zhang Y, Xu S, Tang B, Bai B, Huang Y, Huang T (2010) Angle gathers from reverse time migration. Lead Edge 29:1364–1371. https://doi.org/10.1190/1.3517308
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d1b87cc-5481-481e-a2e6-6f555940d721
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.