Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article provides the general provisions and features of the application of the zonal-indicative methodology for assessing the impact on the state of the atmospheric air of enterprises from local industrial complexes and its practical approbation. A unified approach to determining the zones of negative influence of industrial objects and their groups on the state of atmospheric air is proposed. Analytical dependencies have been established to determine the physical and linear dimensions of the influence zones. The peculiarities of the method of determining “marker” substances for the conditions of formation of the level of atmospheric pollution due to the activity of local industrial complexes are characterized. An algorithm for implementing the method is proposed, which includes procedures for selecting marker substances of the first order (impact), second order (basic), and third order (specific). Significant parameters for the selection procedure of marker substances and the conditions for differentiating emission sources are substantiated, which allows to ensure the effectiveness of the practical implementation of the method. Approbation of the proposed zonal-indicative methodology was carried out on the example of the Kryukiv Carriage Plant, which is part of the local industrial hub in the southern part of Kremenchuk. The calculation of zones of probable influence and other parameters necessary for the application of the indicative evaluation method was carried out. The inverse problem “technological process – marker substance” has been solved. Measurement points of the maximum one-time surface concentrations of pollutants have been determined. Analytical processing of the results of calculation studies and laboratory (including field) observations was carried out. The obtained calculated values of surface concentrations made it possible to determine the substantiated maximum possible contribution of the object to the formation of the general level of atmospheric air pollution in the southern microdistricts of Kremenchuk. In particular, it was established that the level of acceptability of the possible negative impact should be determined based on the results of calculations of the dispersion of marker pollutants in atmospheric air without taking into account background concentrations.
Wydawca
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Educational and Scientific Institute of Mechanical Engineering, Transport and Natural Sciences, Kremenchuk Mykhailo Ostrohradskyi National University, 20 Pershotravneva Str., Kremenchuk, 39600, Ukraine
autor
- Nature Protection Faculty, Odessa State Environmental University, 15 Lvivska Str., Odessa, 65106, Ukraine
autor
- Educational and Scientific Institute of Mechanical Engineering, Transport and Natural Sciences, Kremenchuk Mykhailo Ostrohradskyi National University, 20 Pershotravneva Str., Kremenchuk, 39600, Ukraine
autor
- Educational and Scientific Institute of Mechanical Engineering, Transport and Natural Sciences, Kremenchuk Mykhailo Ostrohradskyi National University, 20 Pershotravneva Str., Kremenchuk, 39600, Ukraine
Bibliografia
- 1. Bascom R., Bromberg P.A., Costa D.A., Devlin R., Dockery D.W., Frampton M.W., Lambert W., Samet J.M., Speizer F.E., Utell M. 1996. Health effects of outdoor air pollution. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. American Journal of Respiratory and Critical Care Medicine, 153(1), 3–50. DOI: 10.1164/ajrccm.153.1.8542133.
- 2. Behrendt H., Becker W.M., Fritzsche C., Sliwa-Tomczok W., Tomczok J., Friedrichs K.H., Ring J. 1997. Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants. Int Arch Allergy Immunol, 113(1–3), 69–74. doi.org/10.1159/000237511.
- 3. Calderon-Garciduenas L., Azzarelli B., Acuna H., Garcia R., Gambling T.M., Osnaya N., Monroy S., DEL Tizapantzi M.R., Carson J.L., Villarreal-Calderon A., Rewcastle B. 2002. Air pollution and brain damage. Toxicol Pathol, 30 (3), 373–389. DOI: 10.1080/01926230252929954
- 4. Gladky O.V. 2010. Socio-geographical research of industrial agglomerations of Ukraine: theory, methods, practice: dissertation abstract. Kyiv. (in Ukrainian)
- 5. Hong Y.C., Lee J.T., Kim H., Kwon H.J. 2002. Air pollution: a new risk factor in ischemic stroke mortality. Stroke, 33(9), 2165–2169. DOI: 10.1161/01. str.0000026865.52610.5b
- 6. Johnson J.Y., Rowe B.H., Villeneuve P.J. 2010. Ecological analysis of long-term exposure to ambient air pollution and the incidence of stroke in Edmonton, Alberta, Canada. Stroke, 41, 1319–1325. DOI: 10.1161/STROKEAHA.110.580571
- 7. Kortsova О. 2018. To the question of the zonal principle of assessment of the influence of powerful industrial objects on the state of atmospheric air pollution. Environmental Safety, 1(25), 84–91. DOI: 10.30929/2073-5057.2018.1.84-91 (in Ukrainian)
- 8. Malovanyy M., Palamarchuk O., Trach I., Petruk H., Sakalova H., Soloviy Kh., Vasylinych T., Tymchuk I., Vronska N. 2020. Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. Journal of Ecological Engineering, 21(7), 178–185. DOI: 10.12911/22998993/125545
- 9. Malovanyy M., Moroz O., Popovich V., Kopiy M., Tymchuk I., Sereda A., Krusir G., Soloviy Ch. 2021. The perspective of using the «open biological conveyor » method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16(2021), 100611. DOI: 10.1016/j.enmm.2021.100611
- 10. Oikonen M., Laaksonen M., Laippala P., Oksaranta O., Lilius E.M., Lindgren S., Rantio-Lehtimaki A., Anttinen A., Koski K., Eralinna J.P. 2003. Ambient air quality and occurrence of multiple sclerosis relapse. Neuroepidemiology, 22(1), 95–99. DOI: 10.1159/000067108
- 11. Plyatsuk L., Chernysh Y., Ablieieva I., Burla O., Hurets L. 2018. Research into biotechnological processes of plant S-nutrition stimulation by the products of phosphogypsum disposal in gas cleaning systems. Eastern-European Journal of Enterprise Technologies, 3(10-93), 6–14. doi.org/10.15587/1729-4061.2018.132240.
- 12. Popovych V., Telak J., Telak O., Malovanyy M., Yakovchuk R., Popovych N. 2020. Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. Journal of Ecological Engineering, 21(1), 52–62. DOI: 10.12911/22998993/113246
- 13. Tymchuk I., Shkvirko O., Sakalova H., Malovanyy M., Dabizhuk T., Shevchuk O., Matviichuk O., Vasylinych T. 2020. Wastewater a Source of Nutrients for Crops Growth and Development. Journal of Ecological Engineering, 21(5), 88–96. DOI: 10.12911/22998993/122188
- 14. Tsai S.S., Goggins W.B., Chiu H.F., Yang C.Y. 2003. Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke, 34(11), 2612–2616. DOI: 10.1161/01.STR.0000095564.33543.64
- 15. Wellenius G.A., Schwartz J., Mittleman M.A. 2005. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke, 36, 2549–2553. DOI: 10.1161/01.STR.0000189687.78760.47
- 16. Yorifuji T., Kawachi I., Sakamoto T., Doi H. 2011. Associations of outdoor air pollution with hemorrhagic stroke mortality. Journal of Occupational and Environmental Medicine, 53(2), 124–126. DOI: 10.1097/JOM.0b013e3182099175
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d131ba2-3f8f-4d70-b103-1aaf48d8308e