PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-linear backstepping ship course controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A ship, as an object for course control, is characterised by a nonlinear function describing the static manoeuvring characteristics. One of the methods, which can be used, for designing a non-linear course controller for ships is the backstepping method. It was used here for designing the configurations of non-linear controllers, which were then applied for ship course control. The parameters of the obtained non-linear control structures were tuned to optimise the operation of the control system. The optimisation was performed using genetic algorithms. The quality of operation of the designed control algorithms was checked in simulation tests performed on the mathematical model of the tanker completed by steering gear.
Słowa kluczowe
Rocznik
Tom
Strony
355--361
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • University of Technology, Gdańsk, Poland
  • Maritime University, Gdynia, Poland
Bibliografia
  • [1] Amerongen, J. (1982). Adaptive steering of ship. A model reference approach to improved manoeuvering and economical course keeping. PhD Thesis, Delft University of Technology, Netherlands.
  • [2] Astrom, K. J. & Wittenmark, B. (1989). Adaptive Control. Addison Wesley, Reading MA.
  • [3] Fossen, T. I. & Strand, J. P. (1998). Non-linear Ship Control (Tutorial Paper). Proceedings of the IFAC Conference on Control Application in Marine Systems CAMS’98. Fukuoka, Japan pp. 1-75.
  • [4] Fossen, T. I. & Strand, J. P. (1999). A Tutorial on Non-linear Backstepping: Applications to Ship Control, Modelling, Identification and Control, MIC-20(2), 83-135.
  • [5] Fossen, T. I. (2002). Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics. Trondheim, Norway.
  • [6] Goldberg, D. E. (1989). Genetic algorithms in searching, optimisation and machine learning. Reading, MA: Addison Wesley.
  • [7] Kokotović, P. & Arcak, M. (2001). Constructive non-linear control: a historical perspective. Automatica 37(5), 637-662.
  • [8] Krstić, M. Kanellakopulos, I. & Kokotović, P. V. (1995). Non-linear and Adaptive Control Design. John Willey & Sons Ltd., New York.
  • [9] Krstić, M. & Tsiotras, P. (1999). Inverse Optimal Stabilization of a Rigid Spacecraft. IEEE Transactions on Automatic Control, 44(5), 1042-1049.
  • [10] La Salle, J. & Lefschetz, S. (1966). Zarys teorii stabilności Lapunowa i jego metody bezpośredniej. BNI. Warszawa.
  • [11] Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin, Springer.
  • [12] Pettersen, K. Y. & Nijmeijer, H. (2004). Global practical stabilization and tracking for an under-actuated ship − a combined averaging and backstepping approach. Modelling, Identification and Control, 20(4), 189-199.
  • [13] Tomera, M., Witkowska, A. & Śmierzchalski, R. (2005). A Nonlinear Ship Course Controller Optimised Using a Genetic Method. Materiały VIII Krajowej Konferencji nt. Algorytmy Ewolucyjne i Optymalizacja Globalna. Korbielów, 255-262.
  • [14] Velagić, J., Vukić, Z. & Omerdić, E. (2003). Adaptive fuzzy ship autopilot for track-keeping. Control Engineering Practice, 11(4), 433-443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d0e1c37-d437-4010-9250-e208c914c8b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.