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The lack of a common methodology on compaction theory stimulates developers of road construc-
tion equipment to create various approximate methods for their calculation, the number of which, at
the present time, is comparable with the nomenclature of the proposed designs of rollers. The article

Keywords presents the analysis of the deformable shell behavior of a road roller, and the compacted material
shell under its compacting roller, in a situation when a rigid circular shell of the roller is replaced by a
road roller forcefully deformable elliptical shape, which, unlike the circular design, allows variation, adjustment
drum and optimization of the road roller impact on the material to be compacted.
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1. Introduction

The mathematical interpretation of the stress-strain state of
a cylindrical shell element using differential equations, con-
sidered in previous studies (Dudkin et al., 2006; Abdeev et
al., 2011; Sakimov et al., 2018), is an approximate one, since
it is based on a flat-plate model having an initial death. This
simplifying assumption did not allow, with sufficient objec-
tivity and reliability, to quantify the possible stability loss of
the shell in the local area of its contact with the road surface
material to be compacted. This assertion-assumption is legit-
imate from the point of view of the almost complete analogy
of the deformation shell of a double-hinged arch under the
action of a uniformly distributed load g = const, where,
even in the linear formulation of the problem, the upper level
of the critical pressure gy, is determined (Kolkunov, 1972).

Therefore, it is necessary to clarify the general conceptual
approach adopted in the first part of this article by
a nonlinear mechanical-mathematical model of an elastic
gently sloping arched system under the conditions of its
cylindrical bend using the curvilinear coordinate x; with
a confirmed simplification about the constancy of the curva-
ture of the curve, and also provided that the external loads
qp = qp (x1) and deflection w = w(x,), there are directed
along the normal to the initial surface (Fig. 1) y; (x,).

JEL: L69, M11:

2. Mechanical-mathematical model

Considering the nature of the pressure function g, (x,) and
the fixing scheme of the element shown in Fig. 1 should be
considered that the subcritical compressive stress a,, corre-
sponds to the main moment state of the shell (Fig. 2), in
which it is necessary to take into account the bending forces
(Kolkunov, 1972). For this purpose, a fictitious transverse
radial load is introduced, as in the linear theory instead of the

force parameter ¢, .
Gy = 4 () = =0 00y T2 (1)

ox 2!
dxy

equivalent to the action of stress g, and equal to the projec-
tion of the distributed force ¢_ox to the direction of the nor-
mal to the curved surface (Fig. 1). From equilibrium condi-
tion (Kolkunov, 1972):

_la [12_,2__E8  dw|l 7R
[ b= xi 121-p2) dxt] 2E@){1-§% @
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The pressure~deformed q (v} Axis of symmerry Revealing obvious boundary equalities u(0) =10 and
; u(%L,) = 0, the result is (Fig. 1):

C:O;A:EE(i.ﬁ_% ‘/1‘52]() (6)

7 13 TR

i ¥ dy
middle surface of the shell Radius of curvature (‘h.l_ j

Equation (2) is solved using the Bubnov-Galerkin method
(Birger et al., 1979; Bostanov et al., 2018; Temirbekov et
al.,, 2019), using the already known values (6) and tables of
type integrals (Doudkin et al., 2013):

2079, () (1—2ﬁ+ )dx1—0:> @
E-8%  64f (16\ (4f* E@JI-¢
21— ) 5_15,_<E) 76" ar, )"
8f lE(g‘)‘/l—S2 251 f 7R
i % 7l R, T 646 lp 2E(§) /1_52 ®
) ? . E-§%  24f* 128 7R, 3
q, = Hi 9 20— i 105, 2 E@) 12
S b y ' where V,, (x;) — the left side of expression (2) in the form of

—_—— a differential-algebraic operator and an additional definite

Fig. 1. Refined theoretical design model of the shell element in the integral (Doudkin et al., 2013)

form of a flat cylindrical shell-arch (Kolkunov, 1972) to assess its

- b d?w 2x?  xf
local stability f F 1=+ dyy =
x?

Replacing q, = /l;—xf:q /1—’1‘—5 according to (1), (2), —4”11’( Ly %)(1_%#;_5) 1-2dx; = ©)
a refined-transformed nonlinear differential equation is ob-

. L W 257 f
tained - f” S S AP T DO | Rt
Y, T ten e, T aazg ) 64L,
E-82 do [(dPw 2-E@JI-8 °
12(1—p?) dxt —4 <—dx1 7R, ) After the term-by-term division of expression (8) into f and

simple transformations, there is in a finite explicit form, the

q X2 TR, dzw characteristic second - order functional dependence
511 () (Kolkunov, 1972) between q and f:

2048 & (E(¢) 52
'52 4 2 — - — -
_Eiz.d_w.d_w. e _, 9= =572, R{n V1 fz[zzu_m*
12(1—p?) dxt dx 2.p@&)/1-¢&2 P

16\ (32f2 12 f E() E(§) ‘i
where the constant A is found using the same method, but +(E)'<W_7'R_' s +< vi-¢ > RZ
using the relative deformation formula &,, = &, (x;) with

curvilinear coordinate x; when counting the movement
u(x,) parallel to the arc L, (Fig. 1), that is:

+

24§ f}

Ao i (10)

At f = 0 from equality (10) the general design formula for
the upper critical pressure qy,, (Kolkunov, 1972) is obtained

du d?*y, L1 1 (da))

0 T, a2 T 2\
2048 8
=d_u_2.E(§)\/1—§2w+1(d_w)Z=§ @ Qv = 370 B X
dxy TR 2 \dx; E c
Whence, after substituting o and performing the integration x [LJF( ) (E('f) \/—Sc)Z @\/1_—52, (11)
procedure, taking into account compliance with the kinemat- BA—p?) \IS/RE\ 7 m

ic boundary condition u(+l,) = 0, the following is obtained: which (Abdeev et al., 2011) is for round (£ = 0, E(0) =

A 1/doN?: 2- E(f)\/l_—scz 1,5708) and elliptical (§ = ¢, =0,57,E(0,57) = 1,434)
u=ulx) = f E‘E(d_xl) shells is written as follows:
w _ 1024 5[ & 4\ G
- 8f? (314 ;116 + ;;3> + ©) Bhew = 3751TERC 2(1—u?) + (15) RZ|’ a2
2048 & 52 16
LE@VI-8 2 | & = E— 0,14066 - —] 0,37504 (13
R <x1—3—l§+5—l{$>+c. T = 3757 " R, |21 — 2 ( ) s
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Using the derived relations (12), (13), determine q,?:,) i q,(f,)

at lp =90 mm, R, = 600 mm,§ = 6,5mm,
N .
E = 196000 (@) = 0,256, 7 = 3,1416:
w0 1024-196000 6,5
U = 37531416 - 600

{6 e () )29 e 00

& _ 2048196000+ 6,5
T = 37531416 - 600

2
' {(2*{?) m * (g) 014066 (%)2} '

-0,37504 = 12,4

(15)

mm?
The stability condition is observed with a large margin, as
in accordance with the calculated data (14), (15).

(@)
w _ Qw2137 _
le)\ = (’S = m = 5,8 > [Tl}] = 1,5
Tmp ’

(E)

® _ Qe _ 124 _

le = ®= m = 2,62 > [le] = 1,5}|
9mp ’

Equating to zero the first derivative z—l‘z = 0 function, de-

(16)

termine the maximum deflection £, (Fig. 1):

21y B OEE
h=(ie) & VI
105 53 T

T a—ud1z8 g . E©) J1-¢2 an

adequate lower practical load q,,, (Kolkunov, 1972), includ-
ing (at T = 3,1416):

— for shell of circular profile (¢ = 0, E(0) = 1,5708)

_(21) 90 1 105 ©5°2 .o
"=\16) 600 2 128 [1—(0,256)2]-902 _ °"™™

— for elliptical shell (¢ = ¢, = 0,57,E(0,57) = 1,434)
(21) 90%-1,434-0,82164 105

18)

E
£ —

H

16

600-3,1416 128
(6,5)%-3,1416

“ 1= (0,256)2] - 907 - 1,434 - 0,82164

The derived formulas (9) - (12), (17) are illustrated in Figure

2 of the existing classical curves (Kolkunov, 1972) (see Ta-
ble 1)

Table 1. Values of the function (20) and (21) to the construction of
the corresponding graphs presented in Fig. 2.

= 6,58 mm

(19)

k) N

9 e | 2137 1643 12,74 10,32 | 92 9.31 10,7 | 13,37 | 17.38 | 2252 | 29

£ mm 0 2 4 B 10 12 14 16 18 :-u|

N
" mm?

124 974 | &04 | 729 | 749 | 864 | 1074 138 178 2276 SR.{‘?l

q(K) — q(K)(f) —

=3691,186(0,000043f2 — 0,0007568f + 0,00579)  (20)
q® =q® () =
= 3691,186(0,0000322f2 — 0,0004235f + 0,003356)  (21)

by analogy with the cubic dependencies of the simplified
model. The graphs of the functional relations (20), (21),
vividly characterizing the equilibrium state of the refined-
modified mechanical system (Fig 1 and 2), along with the
regular values of Table 1 contain special points including

upper q¥,q{% and bottom ¢, ¢{E extreme critical pres-
sures:
q® =21,37 L,q(E) =124 )
kv mm?2’ kv mm? 22)
09 = 0,08 - q® =722
kn 4 mm?2’ kn ’ mm?2’
as well as corresponding movements
9= =0, } 23)
® _ ) _
" =88mm, f,” = 6,58 mm.
N
@ m?
29
28,67
q'21,37 2137
20
a’=124 124
10 ..
q.-9.08
477,26
rrj:f-' 4727 deemict
q.=3,684 1684
0 .4 8 i2 16 1. mm
Pid
£=83

Yo

1 - Function g® = q® (f) for round shell (20)
2 — Function ¢® = q® (f) for elliptical shell (21)

Fig.2. Diagrams of "load-deflection" corresponding to the modi-
fied-modified functional relationships (20) and (21)

It is also marked by dotted thickened lines and the
maximum possible operational extremes.

. N
%) = 3,684 —— = max, a8 = 4727

mm? 24)

To improve the accuracy of the graphic display, the
deflections are also shown in Fig. 7

O =2£8 =176 mm, £¥ = 2£ = 13,16 mm  (25)
under which identities are respected:
q®(17,6) = ¢© = 21,37 L,q(E)(13,26) =q® =124 N (26)
kv mm? kv mm?

It is necessary to perform a condition control check
(Doudkin et al., 2019)

Grv " T " R

s 2 EQ 1

o = 0, (0) =

27
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using formula with x; =0,f =0, q = g, confirming the
physical and mathematical correctness of the refined theoret-
ical and theoretical scheme of the cylindrical shell (Figure 1),
that is, its guaranteed subcritical elasticity (without plastic
deformations) during the operation of the road roller:
—incase of ¢ =0, E(0) = 1,5708 (round shell shape)

@ on s R, 21,37-600
O-OX (0) - 6 - 6 5 -

N
=1972,6— < g,, = 2270 28
2 < Om ) (28)

- when ¢ =&, =0,57, but E(0,57) = 1,434 (elliptical
shape of the drum surface (Abdeev et al., 2011)
q\) -31416-R,
5-2-1434-J1— (0572

_ 124-31416-600
T 6,5°2-1,434-0,82164

a2(0) =

whence it follows that the margin of safety of the shell for
the yield strength o, (Doudkin et al., 2019) varies from
13.1% to 32.8%.

The complexity of the mechanical and mathematical study
of local deformations of the steel shell of a roller of a road
roller with variable geometry of the contact surface and its
analytical study makes it advisable to use finite element
analysis, for example, using the APM FEM software package
for KOMPAS-3D V17.1.

Consider the results of the static calculation in KOMPAS,
as well as the analysis of the stability of the elastic cylindri-
cal shell and the results of the calculation of the natural fre-
quencies and the change in the natural vibration forms of the
thin-walled shell as a result of the machine FEM analysis
according to the given data of the shell model given in Ta-
bles 2, 3 and 4.

It should be noted that when modeling in APM FEM,
KOMPAS-3D objects must be fixed in order to prevent the

N N i i -
= 1526—— < g, = 2270——, 29) free movement of the elastic shell along any of t_he six de
mm mm grees of freedom as an absolutely rigid body.
Table 2. Information on loads, material parameters (Steel), and the results of the model breakdown into cells
Ne Indicator Value Ne Indicator Value
1 ‘ield point [MPa] 235 10 | Pressure: 1 700 N
2 | Elastic modulus normal [MPa] 200000 11 | Pressure: 2 700 N
3 | Poisson's ratio 0.3 12 | Pressure: 3 200N
4 | Density [kg / m3] 7800 13 | Ttem type 4 nodal tetrahedra
5 | Temperature coetficient of linear 0.000012 14 | Maximum length of the side of the 4

expansion [1/ C]

element [mm]

6 | Thermal Conductivity [W / (m * C)] 55 15 | Maximum surface condensation ratio 1

7 | Compressive Strength [MPa] 410 16 | Dilution ratio in volume 1,5

8 | Endurance Limit [MPa] 209 17 | The number of finite elements 195019
9 | Torsion endurance limit [MPa] 139 18 | Number of nodes 64262

b)

along the z axis. The points locat-
ed on the end of the shell are
prohibited to move in the Oxy
plane. Points located on a circle
lying in the plane of symmetry
are not allowed to move along the
Z axis.

Further, to solve the problem, a
grid with finite elements was built
(Fig. 4). The results are contained
in Tables 2 and 3, and are reflect-
ed in Figures 9-16.

Fig. 3. Experimental model of a roller of a road roller with an elastic shell, capable of forcibly
changing its shape: a) partial assembly without unclamping rollers; b) complete assembl

The boundary conditions are specified with regard to
symmetry, according to which the points located in the cross
section of the cylindrical shell, located at a distance of half
the length of the cylinder from any of the ends, cannot move

ARCHIWUM INZYNIERII PRODUKCJI



MIKHAIL DOUDKIN ET AL. / PRODUCTION ENGINEERING ARCHIVES 25 (2019) 1-7

0.2984

02822
0.268
0.2538
0.23%8
0.2255
02112
0.1971
0.1829
0.1887
0.1482
1278
01138
0.09927
0.08508
[ | oo7ost
005673
0.04254
002838

0.01418

Fig. 6. Total linear displacement

s5.92
s8.28
1368
175
2133
2517
200
228.4
3887
az23
4778
5162
5526
5529
| | etz
ee9.8
708
748.3
7847

823

b)

Fig. 4. Model of an elastic, thin-walled drum (a), divided into cells
by a finite-element mesh (b)

Table 3. Inertial characteristics of the model Fig. 7. Action on stress safety factor

37.65

Ne Indicator Value

1| Mass of model [kg] 14.518466

2 | Center of gravity of the model [m] (-0 ;-0 -0.000002 )

3 | Moments of mnertia of the model relative ( 0.366375 ,0.392075 . 0.392075 )

to the center of mass [kg * m2]

4 | Reactive moment relative to the center of ( =0.000049 0000045 . 0) 406
mass [N * m]

5 | The total reaction of the supports [N] (0:0:-197.880822 )

6 | Absolute reaction value [H] 197.880822

7 | Absolute moment value [N * m] 0.000066

Consider the results of static machine calculation in the
figures.

9539
1000

837
129.7
175.8
2218
2879
2139
200
4521
5188
585.5
63e
arre
7237
[ | 7e07
8158
3818
3073
Fig. 8. Distribution of safety factor for strength

In the combined figures 9 - 13 the possible effect on the
shell of natural frequencies is consider, divided into 5 ranges

(Table 4).
Table 4. The results of the calculation of the natural frequencies of
the shell
# Frequency [rad/sec| Frequency [Hz]
l 243.478794 38.750854
2 509.926404 81.157308
3 642296838 102.224717
4 1432.696755 228020771
Fig. 5. Distribution of von Mises equivalent stresses 5 1490.93104 237.289045
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Fig. 9. 1st (a) and 2nd (b) forms of natural oscillations

Fig. 10. 3rd (a) and 4th (b) forms of natural oscillations

ARCHIWUM INZYNIERII PRODUKCJI

Fig. 11. 5th form of natural oscillations of the shell

The critical efforts obtained theoretically are several times
larger than the values obtained using modeling in the APM
FEM KOMPAS-3D, and, therefore, (as it happened) the
results obtained using numerical analysis are much closer to
the known experimental data than the theoretical results. This
allows to conclude that a high degree of reliability of the
results. This is explained by the fact that the theoretical mod-
el does not take into account, for example, the length of the
elastic shell. When the grid is thickened 2 times, the critical
efforts of the models obtained with the help of the APM
FEM KOMPAS-3D, do not practically change. Also, the
forms of buckling of a cylindrical elastic shell are almost
unchanged.

The analysis of the tables and figures allows to conclude
that the solutions obtained are close to the desired exact
solution, since when the grid is thickened, the values of criti-
cal forces and forms of buckling, with the exception of some
curvatures, for example, in 4 and 5 forms of natural oscilla-
tions of the shell, have changed.

3. Conclusion

The analysis of the research carried out allows the follow-
ing conclusions to be drawn:

1) the Bubnov-Galarkin variational high-precision method
solved in a first approximation the original nonlinear prob-
lem of the theory of elasticity and structural mechanics of
machines by definition with a margin of bearing capacity of
local deformations and stability of the steel shell of aroller
of a road roller with varying geometry of the contact surface
compacted until the residual displacements cease;

2) developed one-dimensional physical and mathematical
models of cylindrical bending, clearly illustrated with charac-
teristic numerical examples of a circular shell (K) and ellipti-
cal (E) outlines (Abdeev et al., 2011) (Fig. 2);

3) in the process of the performed calculations, it was
proved that the considered elastic element with a thickness of
6.5 mm and a radius of 600 mm was deformed within the

Hooke's law at stresses of not more than 86.9% of the yield
strength o,= 2270 MPa (mN 5) steel grade 60C2XA (Abdeev

et al., 2011) and theoretical safety factors n§") = 58 and

m
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n§E):2,62 were much higher than the minimum acceptable
value [n,]=1,5 (Doudkin et al., 2019);

4) it was found that to prevent the occurrence of residual
deformations, local dents and clicking (Kolkunov, 1972) of
the shell, it is necessary to use only high-quality spring-

spring steel with high o, =1800 MPa (ml:;z) to make it,

which is of great importance in this particular case - with
high requirements for fatigue strength (Abdeev et al., 2011)
and local resistance, corrosion and thermal resistance; in this
regard, it is possible to recommend, for example, alloys on a
cobalt-chromium-nickel base of the grades 40KXHM,
40KXHMBTU (GOST 10994-74) with o, = 1800 <+ 2500

MPa ( N ) and also some other special structural elastically
mm?

deformable steels (60C2FA, 60C2XFA, 60C2XA, 65C2BA,
etc.);

5) the results of mathematical modeling and FEM analysis
make it possible to optimize the physical and geometric
characteristics of the flexible shell during its design, thereby
ensuring reliable operation of the roller with an adjustable
outline of the working surface of the drum, economical con-
sumption of expensive spring-spring steel and high-quality
compaction of the road surface.
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