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 Abstract 
The lack of a common methodology on compaction theory stimulates developers of road construc-
tion equipment to create various approximate methods for their calculation, the number of which, at 
the present time, is comparable with the nomenclature of the proposed designs of rollers. The article 
presents the analysis of the deformable shell behavior of a road roller, and the compacted material 
under its compacting roller, in a situation when a rigid circular shell of the roller is replaced by a 
forcefully deformable elliptical shape, which, unlike the circular design, allows variation, adjustment 
and optimization of the road roller impact on the material to be compacted. 
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1. Introduction 

The mathematical interpretation of the stress-strain state of 
a cylindrical shell element using differential equations, con-
sidered in previous studies (Dudkin et al., 2006; Abdeev et 
al., 2011; Sakimov et al., 2018), is an approximate one, since 
it is based on a flat-plate model having an initial death. This 
simplifying assumption did not allow, with sufficient objec-
tivity and reliability, to quantify the possible stability loss of 
the shell in the local area of its contact with the road surface 
material to be compacted. This assertion-assumption is legit-
imate from the point of view of the almost complete analogy 
of the deformation shell of a double-hinged arch under the 
action of a uniformly distributed load 𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, where, 
even in the linear formulation of the problem, the upper level 
of the critical pressure 𝑞𝑞𝑘𝑘𝑘𝑘 is determined (Kolkunov, 1972). 

Therefore, it is necessary to clarify the general conceptual 
approach adopted in the first part of this article by 
a nonlinear mechanical-mathematical model of an elastic 
gently sloping arched system under the conditions of its 
cylindrical bend using the curvilinear coordinate 𝑥𝑥1  with 
a confirmed simplification about the constancy of the curva-
ture of the curve, and also provided that the external loads 
𝑞𝑞р = 𝑞𝑞р (𝑥𝑥1) and deflection 𝜔𝜔 = 𝜔𝜔(𝑥𝑥1), there are directed 
along the normal to the initial surface (Fig. 1) 𝑦𝑦1 (𝑥𝑥1). 

2. Mechanical-mathematical model 
Considering the nature of the pressure function 𝑞𝑞р (𝑥𝑥1) and 

the fixing scheme of the element shown in Fig. 1 should be 
considered that the subcritical compressive stress 𝜎𝜎о𝑥𝑥 corre-
sponds to the main moment state of the shell (Fig. 2), in 
which it is necessary to take into account the bending forces 
(Kolkunov, 1972). For this purpose, a fictitious transverse 
radial load is introduced, as in the linear theory instead of the 
force parameter 𝑞𝑞р . 

                     𝑞𝑞р = 𝑞𝑞р (𝑥𝑥1) = −𝛿𝛿 ∙ 𝜎𝜎о𝑥𝑥 ∙
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

,                     (1) 

equivalent to the action of stress 𝜎𝜎о𝑥𝑥 and equal to the projec-
tion of the distributed force σ_ox to the direction of the nor-
mal to the curved surface (Fig. 1). From equilibrium condi-
tion (Kolkunov, 1972): 

                       𝜎𝜎𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑜𝑜𝑜𝑜(𝑥𝑥1) = �
𝑞𝑞𝑝𝑝
𝛿𝛿
−

𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2) ∙
𝑑𝑑4𝜔𝜔
𝑑𝑑𝑥𝑥14

� ∙
𝑎𝑎2

𝑏𝑏
= 

                              = � 𝑞𝑞
𝑙𝑙𝑝𝑝∙𝛿𝛿

�𝑙𝑙𝑝𝑝2 − 𝑥𝑥12 −
𝐸𝐸∙𝛿𝛿2

12(1−𝜇𝜇2)
∙ 𝑑𝑑

4𝜔𝜔
𝑑𝑑𝑥𝑥14

� ∙ 𝜋𝜋𝑅𝑅𝑐𝑐
2∙𝐸𝐸(𝜉𝜉)�1−𝜉𝜉2

.                (2) 
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Fig. 1. Refined theoretical design model of the shell element in the 
form of a flat cylindrical shell-arch (Kolkunov, 1972) to assess its 

local stability 

Replacing 𝑞𝑞𝑝𝑝 = 𝑞𝑞
𝑙𝑙𝑝𝑝
�𝑙𝑙𝑝𝑝2 − 𝑥𝑥12 = 𝑞𝑞�1 − 𝑥𝑥12

𝑙𝑙𝑝𝑝2
 according to (1), (2), 

a refined-transformed nonlinear differential equation is ob-
tained 

𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2) ∙
𝑑𝑑4𝜔𝜔
𝑑𝑑𝑥𝑥14

− 𝐴𝐴�
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

+
2 ∙ 𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
� + 

                                   +
𝑞𝑞
𝛿𝛿
�1 −

𝑥𝑥12

𝑙𝑙𝑝𝑝2
∙

𝜋𝜋𝑅𝑅𝑐𝑐
2 ∙ 𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2

∙
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

−                        (3) 

−
𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2) ∙
𝑑𝑑4𝜔𝜔
𝑑𝑑𝑥𝑥14

∙
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

∙
𝜋𝜋𝑅𝑅𝑐𝑐

2 ∙ 𝐸𝐸(𝜉𝜉)�1− 𝜉𝜉2
= 0, 

 
where the constant A is found using the same method, but 
using the relative deformation formula 𝜀𝜀𝑥𝑥1 = 𝜀𝜀𝑥𝑥1(𝑥𝑥1) with 
curvilinear coordinate 𝑥𝑥1 when counting the movement 
𝑢𝑢(𝑥𝑥1) parallel to the arc 𝑙𝑙𝑝𝑝 (Fig. 1), that is: 

𝜀𝜀𝑥𝑥1 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

−
𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

𝜔𝜔 +
1
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

�
2

= 

                                       = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

− 2∙𝐸𝐸(𝜉𝜉)�1−𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
𝜔𝜔 + 1

2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1
�
2

= 𝐴𝐴
𝐸𝐸

                      (4) 

Whence, after substituting ω and performing the integration 
procedure, taking into account compliance with the kinemat-
ic boundary condition 𝑢𝑢(±𝑙𝑙р) = 0, the following is obtained: 

𝑢𝑢 = 𝑢𝑢(𝑥𝑥1) = ��
𝐴𝐴
𝐸𝐸
−

1
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

�
2

−
2 ∙ 𝐸𝐸(𝜉𝜉)�1− 𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
𝜔𝜔�𝑑𝑑𝑥𝑥1 = 

                                   =
𝐴𝐴
𝐸𝐸
𝑥𝑥1 − 8𝑓𝑓2 �

𝑥𝑥13

3𝑙𝑙𝑝𝑝4
− 2

𝑥𝑥15

5𝑙𝑙𝑝𝑝6
+
𝑥𝑥17

5𝑙𝑙𝑝𝑝8
� +                              (5) 

+
2 ∙ 𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
∙ 𝑓𝑓 ∙ �𝑥𝑥1 −

2𝑥𝑥13

3𝑙𝑙𝑝𝑝2
+
𝑥𝑥15

5𝑙𝑙𝑝𝑝4
� + 𝐶𝐶. 

Revealing obvious boundary equalities  𝑢𝑢(0) = 0 and 
𝑢𝑢�±𝑙𝑙𝑝𝑝� = 0, the result is (Fig. 1): 

                     С = 0; 𝐴𝐴 = 16
15
𝐸𝐸 �4

7
∙ 𝑓𝑓

2

𝑙𝑙𝑝𝑝2
− 2∙𝐸𝐸(𝜉𝜉)�1−𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
∙ 𝑓𝑓�            (6) 

Equation (2) is solved using the Bubnov-Galerkin method 
(Birger et al., 1979; Bostanov et al., 2018; Temirbekov et 
al.,, 2019), using the already known values (6) and tables of 
type integrals (Doudkin et al., 2013): 

                    2∫ ∇𝜔𝜔
𝑙𝑙𝑝𝑝
0

(𝑥𝑥1) ∙ �1 − 2𝑥𝑥12

𝑙𝑙𝑝𝑝2
+ 𝑥𝑥14

𝑙𝑙𝑝𝑝4
�𝑑𝑑𝑥𝑥1 = 0,⇒             (7) 

𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2) ∙
64𝑓𝑓
5𝑙𝑙𝑝𝑝3

− �
16
15
�
2

∙ �
4𝑓𝑓2

7𝑙𝑙𝑝𝑝2
−
𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
𝑓𝑓� × 

      × �−
8𝑓𝑓
7𝑙𝑙𝑝𝑝

+
𝑙𝑙𝑝𝑝𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2

𝜋𝜋𝑅𝑅𝑐𝑐
�𝐸𝐸 −

25𝜋𝜋 ∙ 𝑓𝑓
64 ∙ 𝛿𝛿 ∙ 𝑙𝑙𝑝𝑝

∙
𝜋𝜋𝑅𝑅𝑐𝑐

2𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2
𝑞𝑞 +       (8) 

+
𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2) ∙
24𝑓𝑓2

𝑙𝑙𝑝𝑝4
∙

128
105𝑙𝑙𝑝𝑝

∙
𝜋𝜋𝑅𝑅𝑐𝑐

2 ∙ 𝐸𝐸(𝜉𝜉)�1 − 𝜉𝜉2
= 0; 

where ∇𝜔𝜔(𝑥𝑥1) – the left side of expression (2) in the form of 
a differential-algebraic operator and an additional definite 
integral (Doudkin et al., 2013)  

�
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

𝑙𝑙𝑝𝑝

0
�1 −

𝑥𝑥12

𝑙𝑙𝑝𝑝2
∙ �1 −

2𝑥𝑥12

𝑙𝑙𝑝𝑝2
+
𝑥𝑥14

𝑙𝑙𝑝𝑝4
�𝑑𝑑𝑥𝑥1 = 

                     = 4𝑓𝑓 ∫ �− 1
𝑙𝑙𝑝𝑝

+ 3𝑥𝑥12

𝑙𝑙𝑝𝑝4
�𝑙𝑙𝑝𝑝

0 ∙ �1 − 2𝑥𝑥12

𝑙𝑙𝑝𝑝2
+ 𝑥𝑥14

𝑙𝑙𝑝𝑝4
��1 − 𝑥𝑥12

𝑙𝑙𝑝𝑝2
𝑑𝑑𝑥𝑥1 =                (9) 

= 4𝑓𝑓� �−
1

2𝑙𝑙𝑝𝑝
+

5
8𝑙𝑙𝑝𝑝

−
7

16𝑙𝑙𝑝𝑝
+

15
4 ∙ 32𝑙𝑙𝑝𝑝

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥1
𝑙𝑙𝑝𝑝
�
0

𝑙𝑙𝑝𝑝

= −
25 ∙ 𝜋𝜋 ∙ 𝑓𝑓

64𝑙𝑙𝑝𝑝

𝑙𝑙𝑝𝑝

0
 

After the term-by-term division of expression (8) into f and 
simple transformations, there is in a finite explicit form, the 
characteristic second – order functional dependence 
(Kolkunov, 1972) between q and f: 

𝑞𝑞 = 𝑞𝑞(𝑓𝑓) =
2048
375𝜋𝜋

𝐸𝐸
𝛿𝛿
𝑅𝑅𝑐𝑐
�
𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2 �

𝛿𝛿2

𝑙𝑙𝑝𝑝2(1 − 𝜇𝜇2) + 

+�
16
15
� ∙ �

32𝑓𝑓2

49𝑙𝑙𝑝𝑝2
−

12
7
∙
𝑓𝑓
𝑅𝑅𝑐𝑐

∙
𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2 + �

𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2�

2 𝑙𝑙𝑝𝑝2

𝑅𝑅𝑐𝑐2
�� + 

                                                    +
24

21(1 − 𝜇𝜇2) ∙
𝛿𝛿3𝑓𝑓
𝑙𝑙𝑝𝑝4
�                                        (10) 

At 𝑓𝑓 = 0 from equality (10) the general design formula for 
the upper critical pressure 𝑞𝑞𝑘𝑘𝑘𝑘 (Kolkunov, 1972) is obtained 

𝑞𝑞𝑘𝑘𝑘𝑘 =
2048
375𝜋𝜋

𝐸𝐸
𝛿𝛿
𝑅𝑅𝑐𝑐

× 

             × �
𝛿𝛿2

𝑙𝑙𝑝𝑝2(1 − 𝜇𝜇2) + �
16
15
�
𝑙𝑙𝑝𝑝2

𝑅𝑅𝑐𝑐2
�
𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2�

2

�
𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2,        (11) 

which (Abdeev et al., 2011) is for round (𝜉𝜉 = 0, 𝐸𝐸(0) =
1,5708) and elliptical (𝜉𝜉 = 𝜉𝜉𝑝𝑝 = 0,57, 𝐸𝐸(0,57) = 1,434) 
shells is written as follows: 

                            𝑞𝑞𝑘𝑘𝑘𝑘
(к) =

1024
375𝜋𝜋

𝐸𝐸
𝛿𝛿
𝑅𝑅𝑐𝑐
�

𝛿𝛿2

𝑙𝑙𝑝𝑝2(1 − 𝜇𝜇2) + �
4

15
�
𝑙𝑙𝑝𝑝2

𝑅𝑅𝑐𝑐2
�,                        (12) 

        𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) =

2048
375𝜋𝜋

𝐸𝐸
𝛿𝛿
𝑅𝑅𝑐𝑐
�

𝛿𝛿2

𝑙𝑙𝑝𝑝2(1 − 𝜇𝜇2) + �
16
15
� ∙ 0,14066 ∙

𝑙𝑙𝑝𝑝2

𝑅𝑅𝑐𝑐2
� ∙ 0,37504    (13) 
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Using the derived relations (12), (13), determine 𝑞𝑞𝑘𝑘𝑘𝑘
(к) i 𝑞𝑞𝑘𝑘𝑘𝑘

(𝐸𝐸) 
at 𝑙𝑙р = 90 𝑚𝑚𝑚𝑚, 𝑅𝑅𝑐𝑐 = 600 𝑚𝑚𝑚𝑚, 𝛿𝛿 = 6,5 𝑚𝑚𝑚𝑚, 
Е = 196000 � 𝑁𝑁

𝑚𝑚𝑚𝑚2� , 𝜇𝜇 = 0,256, 𝜋𝜋 = 3,1416: 

𝑞𝑞𝑘𝑘𝑘𝑘
(к) =

1024 ∙ 196000 ∙ 6,5
375 ∙ 3,1416 ∙ 600

∙ 

                ∙ ��
6,5
90
�
2

∙
1

[1 − (0,256)2] + �
4

15
� �

90
600

�
2

� = 21,37 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ,     (14) 

𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) =

2048 ∙ 196000 ∙ 6,5
375 ∙ 3,1416 ∙ 600

∙ 

∙ ��
6,5
90
�
2

∙
1

[1 − (0,256)2] + �
16
15
� ∙ 0,14066 ∙ �

90
600

�
2

� ∙ 

                                               ∙ 0,37504 = 12,4 
𝑁𝑁

𝑚𝑚𝑚𝑚2                                       (15) 

The stability condition is observed with a large margin, as 
in accordance with the calculated data (14), (15).  

                               𝑛𝑛у
(к) =

𝑞𝑞𝑘𝑘𝑘𝑘
(к)

𝑞𝑞𝑚𝑚𝑚𝑚
(к) =

21,37
3,684

= 5,8 ≫ �𝑛𝑛у� = 1,5

                           𝑛𝑛у
(𝐸𝐸) =

𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸)

𝑞𝑞𝑚𝑚𝑚𝑚
(𝐸𝐸) =

12,4
4,727

= 2,62 ≫ �𝑛𝑛у� = 1,5
⎭
⎪
⎬

⎪
⎫

                     (16) 

Equating to zero the first derivative 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 function, de-
termine the maximum deflection 𝑓𝑓𝑛𝑛 (Fig. 1): 

𝑓𝑓𝑛𝑛 = �
21
16
� ∙

𝑙𝑙𝑝𝑝2

𝑅𝑅𝑐𝑐
∙
𝐸𝐸(𝜉𝜉)
𝜋𝜋 �1 − 𝜉𝜉2 − 

                              − 105
(1−𝜇𝜇2)∙128

∙ 𝛿𝛿
3

𝑙𝑙𝑝𝑝2
∙ 𝜋𝜋

𝐸𝐸(𝜉𝜉) �1−𝜉𝜉2
,                      (17) 

adequate lower practical load 𝑞𝑞𝑘𝑘𝑘𝑘 (Kolkunov, 1972), includ-
ing (at 𝜋𝜋 = 3,1416): 

– for shell of circular profile (𝜉𝜉 = 0, 𝐸𝐸(0) = 1,5708) 

               𝑛𝑛 = �
21
16
� ∙

902

600
∙

1
2
−

105
128

∙
(6,5)3 ∙ 2

[1 − (0,256)2] ∙ 902
= 8,8 𝑚𝑚𝑚𝑚      (18) 

– for elliptical shell (𝜉𝜉 = 𝜉𝜉п = 0,57, 𝐸𝐸(0,57) = 1,434) 

𝑓𝑓н
(𝐸𝐸) = �

21
16
� ∙

902 ∙ 1,434 ∙ 0,82164
600 ∙ 3,1416

−
105
128

× 

                         ×
(6,5)3 ∙ 3,1416

[1 − (0,256)2] ∙ 902 ∙ 1,434 ∙ 0,82164
= 6,58 𝑚𝑚𝑚𝑚      (19) 

The derived formulas (9) - (12), (17) are illustrated in Figure 
2 of the existing classical curves (Kolkunov, 1972) (see Ta-
ble 1)  

Table 1. Values of the function (20) and (21) to the construction of 
the corresponding graphs presented in Fig. 2. 

 
𝑞𝑞(к) = 𝑞𝑞(к)(𝑓𝑓) = 

                     = 3691,186(0,000043𝑓𝑓2 − 0,0007568𝑓𝑓 + 0,00579)        (20) 

𝑞𝑞(𝐸𝐸) = 𝑞𝑞(𝐸𝐸)(𝑓𝑓) = 

                  = 3691,186(0,0000322𝑓𝑓2 − 0,0004235𝑓𝑓 + 0,003356)      (21) 

by analogy with the cubic dependencies of the simplified 
model. The graphs of the functional relations (20), (21), 
vividly characterizing the equilibrium state of the refined-
modified mechanical system (Fig 1 and 2), along with the 
regular values of Table 1 contain special points including 
upper 𝑞𝑞𝑘𝑘𝑘𝑘

(к),𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) and bottom 𝑞𝑞𝑘𝑘𝑘𝑘

(к), 𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) extreme critical pres-

sures:  
                            𝑞𝑞𝑘𝑘𝑘𝑘

(к) = 21,37 
𝑁𝑁

𝑚𝑚𝑚𝑚2 , 𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) = 12,4 

𝑁𝑁
𝑚𝑚𝑚𝑚2 ,

                              𝑞𝑞𝑘𝑘𝑘𝑘
(к) = 9,08 

𝑁𝑁
𝑚𝑚𝑚𝑚2 , 𝑞𝑞𝑘𝑘𝑘𝑘

(𝐸𝐸) = 7,22 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ,
�                         (22) 

as well as corresponding movements 

                                          𝑓𝑓в
(к) = 𝑓𝑓в

(э) = 0,
                                         𝑓𝑓𝑛𝑛

(к) = 8,8 мм, 𝑓𝑓𝑛𝑛
(𝐸𝐸) = 6,58 𝑚𝑚𝑚𝑚.

�                           (23) 

 
1 – Function 𝑞𝑞(к) = 𝑞𝑞(к)(𝑓𝑓) for round shell (20) 

2 – Function 𝑞𝑞(𝐸𝐸) = 𝑞𝑞(𝐸𝐸)(𝑓𝑓) for elliptical shell (21) 

Fig.2. Diagrams of "load-deflection" corresponding to the modi-
fied-modified functional relationships (20) and (21) 

It is also marked by dotted thickened lines and the 
maximum possible operational extremes. 

                      𝑞𝑞м𝑝𝑝
(к) = 3,684 

𝑁𝑁
𝑚𝑚𝑚𝑚2 = 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑞𝑞м𝑝𝑝

(𝐸𝐸) = 4,727 
𝑁𝑁

𝑚𝑚𝑚𝑚2                     (24) 

To improve the accuracy of the graphic display, the 
deflections are also shown in Fig. 7 

                        𝑓𝑓0
(к) = 2𝑓𝑓𝑛𝑛

(к) = 17,6 𝑚𝑚𝑚𝑚, 𝑓𝑓0
(𝐸𝐸) = 2𝑓𝑓𝑛𝑛

(𝐸𝐸) = 13,16 𝑚𝑚𝑚𝑚         (25) 

under which identities are respected: 

𝑞𝑞(к)(17,6) = 𝑞𝑞𝑘𝑘𝑘𝑘
(к) = 21,37 

𝑁𝑁
𝑚𝑚𝑚𝑚2 , 𝑞𝑞(𝐸𝐸)(13,26) = 𝑞𝑞𝑘𝑘𝑘𝑘

(𝐸𝐸) = 12,4 
𝑁𝑁

𝑚𝑚𝑚𝑚2       (26) 

It is necessary to perform a condition control check 
(Doudkin et al., 2019) 

                                𝜎𝜎𝑜𝑜𝑜𝑜
(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝜎𝜎𝑜𝑜𝑜𝑜(0) =

𝑞𝑞𝑘𝑘𝑘𝑘 ∙ 𝜋𝜋 ∙ 𝑅𝑅𝑐𝑐
𝛿𝛿 ∙ 2 ∙ 𝐸𝐸(𝜉𝜉) ∙ �1 − 𝜉𝜉2

< 𝜎𝜎т            (27) 
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using formula with 𝑥𝑥1 = 0, 𝑓𝑓 = 0, 𝑞𝑞 = 𝑞𝑞𝑘𝑘𝑘𝑘  confirming the 
physical and mathematical correctness of the refined theoret-
ical and theoretical scheme of the cylindrical shell (Figure 1), 
that is, its guaranteed subcritical elasticity (without plastic 
deformations) during the operation of the road roller:  

– in case of 𝜉𝜉 = 0, 𝐸𝐸(0) = 1,5708 (round shell shape) 

𝜎𝜎𝑜𝑜𝑜𝑜
(к)(0) =

𝑞𝑞𝑘𝑘𝑘𝑘
(к) ∙ 𝑅𝑅𝑐𝑐
𝛿𝛿

=
21,37 ∙ 600

6,5
= 

                                                   = 1972,6
𝑁𝑁

𝑚𝑚𝑚𝑚2 < 𝜎𝜎т = 2270
𝑁𝑁

𝑚𝑚𝑚𝑚2]            (28) 

– when 𝜉𝜉 = 𝜉𝜉𝑝𝑝 = 0,57, but  𝐸𝐸(0,57) = 1,434 (elliptical 
shape of the drum surface (Abdeev et al., 2011) 

𝜎𝜎𝑜𝑜𝑜𝑜
(𝐸𝐸)(0) =

𝑞𝑞𝑘𝑘𝑘𝑘
(𝐸𝐸) ∙ 3,1416 ∙ 𝑅𝑅𝑐𝑐

𝛿𝛿 ∙ 2 ∙ 1,434 ∙ �1 − (0,57)2
= 

         =
12,4 ∙ 3,1416 ∙ 600

6,5 ∙ 2 ∙ 1,434 ∙ 0,82164
= 

                                               = 1526
𝑁𝑁

𝑚𝑚𝑚𝑚2 < 𝜎𝜎т = 2270
𝑁𝑁

𝑚𝑚𝑚𝑚2,                    (29) 

 

whence it follows that the margin of safety of the shell for 
the yield strength σт (Doudkin et al., 2019) varies from 
13.1% to 32.8%. 

The complexity of the mechanical and mathematical study 
of local deformations of the steel shell of a roller of a road 
roller with variable geometry of the contact surface and its 
analytical study makes it advisable to use finite element 
analysis, for example, using the APM FEM software package 
for KOMPAS-3D V17.1. 

Consider the results of the static calculation in KOMPAS, 
as well as the analysis of the stability of the elastic cylindri-
cal shell and the results of the calculation of the natural fre-
quencies and the change in the natural vibration forms of the 
thin-walled shell as a result of the machine FEM analysis 
according to the given data of the shell model given in Ta-
bles 2, 3 and 4. 

It should be noted that when modeling in APM FEM, 
KOMPAS-3D objects must be fixed in order to prevent the 
free movement of the elastic shell along any of the six de-
grees of freedom as an absolutely rigid body.

Table 2. Information on loads, material parameters (Steel), and the results of the model breakdown into cells 

 

The boundary conditions are specified with regard to 
symmetry, according to which the points located in the cross 
section of the cylindrical shell, located at a distance of half 
the length of the cylinder from any of the ends, cannot move 

along the z axis. The points locat-
ed on the end of the shell are 
prohibited to move in the Oxy 
plane. Points located on a circle 
lying in the plane of symmetry 
are not allowed to move along the 
z axis. 

Further, to solve the problem, a 
grid with finite elements was built 
(Fig. 4). The results are contained 
in Tables 2 and 3, and are reflect-
ed in Figures 9-16. 
 

 
 
 
 

 

a) 

 

b) 

 

Fig. 3. Experimental model of a roller of a road roller with an elastic shell, capable of forcibly 
changing its shape: a) partial assembly without unclamping rollers; b) complete assembl 
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a)  

 b)  
                                                                         

Fig. 4. Model of an elastic, thin-walled drum (a), divided into cells 
by a finite-element mesh (b) 

Table 3. Inertial characteristics of the model 

 

Consider the results of static machine calculation in the 
figures. 

 

 
 

Fig. 5. Distribution of von Mises equivalent stresses 
 

 
 

Fig. 6. Total linear displacement 
 

 
 

Fig. 7. Action on stress safety factor 

 
Fig. 8. Distribution of safety factor for strength 

In the combined figures 9 - 13 the possible effect on the 
shell of natural frequencies is consider, divided into 5 ranges 
(Table 4). 

Table 4. The results of the calculation of the natural frequencies of 
the shell  
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Fig. 9. 1st (a) and 2nd (b) forms of natural oscillations 

 
 

Fig. 10. 3rd (a) and 4th (b) forms of natural oscillations 
 

 
Fig. 11. 5th form of natural oscillations of the shell 

The critical efforts obtained theoretically are several times 
larger than the values obtained using modeling in the APM 
FEM KOMPAS-3D, and, therefore, (as it happened) the 
results obtained using numerical analysis are much closer to 
the known experimental data than the theoretical results. This 
allows to conclude that a high degree of reliability of the 
results. This is explained by the fact that the theoretical mod-
el does not take into account, for example, the length of the 
elastic shell. When the grid is thickened 2 times, the critical 
efforts of the models obtained with the help of the APM 
FEM KOMPAS-3D, do not practically change. Also, the 
forms of buckling of a cylindrical elastic shell are almost 
unchanged. 

The analysis of the tables and figures allows to conclude 
that the solutions obtained are close to the desired exact 
solution, since when the grid is thickened, the values of criti-
cal forces and forms of buckling, with the exception of some 
curvatures, for example, in 4 and 5 forms of natural oscilla-
tions of the shell, have changed. 

3. Conclusion 
The analysis of the research carried out allows the follow-

ing conclusions to be drawn: 
1) the Bubnov-Galarkin variational high-precision method 

solved in a first approximation the original nonlinear prob-
lem of the theory of elasticity and structural mechanics of 
machines by definition with a margin of bearing capacity of 
local deformations and stability of the steel shell of a roller 
of a road roller with varying geometry of the contact surface 
compacted until the residual displacements cease; 

2) developed one-dimensional physical and mathematical 
models of cylindrical bending, clearly illustrated with charac-
teristic numerical examples of a circular shell (K) and ellipti-
cal (E) outlines (Abdeev et al., 2011) (Fig. 2); 

3) in the process of the performed calculations, it was 
proved that the considered elastic element with a thickness of 
6.5 mm and a radius of 600 mm was deformed within the 
Hooke's law at stresses of not more than 86.9% of the yield 
strength 𝜎𝜎т= 2270 MPa ( 𝑁𝑁

𝑚𝑚𝑚𝑚2) steel grade 60C2XA (Abdeev 

et al., 2011) and theoretical safety factors 𝑛𝑛у
(к) = 5,8 and 
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𝑛𝑛у
(𝐸𝐸)=2,62 were much higher than the minimum acceptable 

value [𝑛𝑛у]=1,5 (Doudkin et al., 2019); 
4) it was found that to prevent the occurrence of residual 

deformations, local dents and clicking (Kolkunov, 1972) of 
the shell, it is necessary to use only high-quality spring-
spring steel with high 𝜎𝜎т ≥1800 MPa ( 𝑁𝑁

𝑚𝑚𝑚𝑚2) to make it, 
which is of great importance in this particular case - with 
high requirements for fatigue strength (Abdeev et al., 2011) 
and local resistance, corrosion and thermal resistance; in this 
regard, it is possible to recommend, for example, alloys on a 
cobalt-chromium-nickel base of the grades 40КХНМ, 
40КХНМВТU (GOST 10994-74) with 𝜎𝜎т = 1800 ÷ 2500 
MPa ( 𝑁𝑁

𝑚𝑚𝑚𝑚2) and also some other special structural elastically 
deformable steels (60C2FA, 60C2XFA, 60C2XA, 65C2BA, 
etc.);  

5) the results of mathematical modeling and FEM analysis 
make it possible to optimize the physical and geometric 
characteristics of the flexible shell during its design, thereby 
ensuring reliable operation of the roller with an adjustable 
outline of the working surface of the drum, economical con-
sumption of expensive spring-spring steel and high-quality 
compaction of the road surface.  
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接触面几何形状变化的压路机钢辊变形的数学和实验研究 
 

關鍵詞 

贝壳， 

压路机， 

鼓， 

钢， 

强调 

 摘要 

缺乏压实理论的通用方法会刺激道路施工设备的开发人员创建各种近似的计算方法，目前，其

数量可与拟议的压路机设计术语相提并论。 

该文章介绍了在压路机的刚性圆形外壳被强制变形的椭圆形代替的情况下，对压路机的可变形

壳行为及其压实辊下的压实材料的分析，该椭圆形不同于圆形设计 

可以改变，调节和优化压路机对要压实材料的冲击。 
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