Aleksander Waliszyn, Andrzej Adamkiewicz Maritime University of Szczecin, Faculty of Marine Engineering, Wały Chrobrego 1-2, 70-500 Szczecin, Poland a.valishin@am.szczecin.pl, a.adamkiewicz@am.szczecin.pl

BADANIA ODPORNOŚCI EROZYJNEJ NIKLU I JEGO STOPU DO ZASTOSOWANIA W ELEMENTACH MASZYN PRZEPŁYWOWYCH

STUDIES ON RESISTANCE TO EROSION OF NICKEL AND ITS ALLOYS TO BE USED IN ELEMENTS OF FLUID - FLOW MACHINES

Streszczenie. W artykule przedstawiono wyniki badań odporności metali na uszkodzenia erozyjne zachodzące pod wpływem kawitacji hydraulicznej. Na podstawie wyników wcześniejszych badań, przyjęto hipotezę o zmęczeniowym charakterze zużycia erozyjnego oraz zależności odporności metali na zniszczenia erozyjne od struktury ich sieci krystalicznej. Dla potwierdzenia przyjętej hipotezy na stanowisku kawitacyjno-udarowym sprawdzono metale z różnymi sieciami krystalicznymi: stal 45 (sieć płasko centralna), nikiel 200/201 oraz stop niklu Monel 400 (sieć heksagonalna). Otrzymane wyniki badań potwierdziły przyjętą hipotezę, wskazując tym samym na zasadność stosowania niklowych powłok ochronnych w maszynach przepływowych.

Słowa kluczowe: zniszczenia erozyjne, odporność, stopy niklu, maszyna przepływowa.

1. Fizyka erozji kawitacyjnej w układach chłodzenia silników o zapłonie samoczynnym

Uszkodzenia korozyjno-erozyjne powierzchni maszyn przepływowych, omywanych płynami i powierzchni wymiany ciepła chłodzonych cieczami, w znacznym stopniu pogarszają stan techniczny powierzchni i zmniejszają ich trwałość. Przyczyną powstawania erozji najczęściej jest kawitacja płynu w przestrzeni roboczej maszyny. Pomimo dużej liczby badań nad zjawiskiem kawitacji i powstawaniem uszkodzeń erozyjnych powierzchni metali, otwartą pozostaje fizyka oddziaływania strumienia cieczy na powierzchnie ochronne warstw, a w szczególności warstw tłumiących [3, 4, 7].

Współcześnie zdobyła uznanie teoria korozyjno-erozyjnego niszczenia tulei cylindrowych silników o zapłonie samoczynnym [1, 2]. Przeważającym jest pogląd, że praprzyczyną zniszczeń powierzchni chłodzonych tulei i bloków cylindrowych jest

gwałtowne oddziaływanie cieczy na warstwę wierzchnią metalu, w wyniku implozji pęcherzyków kawitacyjnych [1, 13]. Erozyjne zniszczenie tulei i bloków cylindrowych, przejawiające się powstaniem skupisk głębokich wżerów, odbywa się wskutek procesów mechanicznego złożonego współdziałania i elektrochemicznego uszkadzania metalu elementu, a mianowicie erozji kawitacyjnej i korozji elektrochemicznej. W wyniku oddziaływania uderzeń tłoka, przy przejściach korbowodu przez górny (GMP) i dolny (DMP) martwe punkty, tuleja cylindrowa podlega drganiom o wysokiej częstotliwości, co powoduje zmiany prędkości strumieni cieczy chłodzącej na powierzchniach tulei i bloków cylindrowych. Powstające przy tym lokalne depresje i wzrosty ciśnienia cieczy sprzyjają zrywaniu ciągłości strumienia i tworzeniu w obszarach obniżonego ciśnienia dużej liczby pęcherzyków kawitacyjnych wypełnionych parą, gazem lub ich dwufazową mieszaniną.

Zmianę ciśnienia w dowolnym punkcie na powierzchni tulei omywanej przez ciecz można ocenić bezwymiarowym współczynnikiem miejscowego rozładowania [2]

$$\xi = \left(\frac{\vartheta_0}{\vartheta_i}\right)^2 - 1 \tag{1}$$

gdzie: ϑ_0 – średnia prędkość cieczy omywającej powierzchnię tulei;

 $artheta_i$ – prędkość strumienia $\,$ w punkcie "i" na powierzchni tulei.

Największe rozładowanie p_i wystąpi w punkcie, w którym współczynnik ξ będzie maksymalny:

$$p_i = p_0 - q\xi \tag{2}$$

gdzie: p_0 – ciśnienie średnie cieczy;

q – prędkość wzrostu ciśnienia strumienia cieczy,

$$q = p\vartheta_i^2/2 \tag{3}$$

ρ – gęstość cieczy.

Proces powstania kawitacji zaczyna się, kiedy p_i osiągnie wartość ciśnienia pary nasyconej cieczy p_n , przy temperaturze otoczenia. Tworzenie pęcherzyków kawitacyjnych następuje w strumieniu opływającym powierzchnie tulei cylindrowych w obszarze, gdzie strumień cieczy przepływa przez przewężenia i ma największą prędkość, a ich implozja zachodzi w zakresie prędkości obniżonej gdzie strumień napotyka opór ruchu lub przepływa przez przestrzenie o rozszerzającym się przekroju. Prędkość przepływu wody w układach chłodzenia okrętowych silników spalinowych na ogół nie przekracza 2 m/s i nie tworzy warunków do powstawania kawitacji hydrodynamicznej. Dlatego, za podstawową przyczyną zrywania ciągłości strumieni cieczy należy uznać drgania tulei cylindrowych o wysokiej częstotliwości [14]. Obecność drgań wysokiej częstotliwości tulei sprzyja powstaniu warunków kawitacji w układach wody chłodzącej. Wyjaśnienie teoretyczne tego zjawiska uzasadnia fakt, że przy zwiększeniu ciśnienia dynamicznego ($q = \rho \vartheta_i^2/2$) maleje cieśnienie statyczne cieczy i tworzą się warunki sprzyjające zerwaniu jej ciągłości. Do tego przyczynia się oddziaływanie rozciągające tulei cylindrowej, na skutek ruchu drgającego.

Ciecz posiada wytrzymałość objętościową i przeciwstawia się naprężeniom rozciągającym. W momencie równości lub przekraczania wytrzymałości objętościowej

pod wpływem naprężeń rozciągających tulei cylindrowej, zaczynają się procesy kawitacyjne – tworzenie pęcherzyków parowo-gazowych. Częstotliwość pulsacji pęcherzyków jest równa wówczas częstotliwości drgań tulei cylindrowej.

Podczas implozji pęcherzyka parowo-gazowego, na granicy jego powierzchni powstają strumienie cieczy o dużej prędkości do 34 m/s, przy czym ciśnienie cieczy na granicy implozji pęcherzyka z powierzchnią metalu omywanego wodą może przekraczać (5·10⁶) Pa [12]. Wówczas energia uderzenia cząstek strumienia kumulatywnego jest równa:

$$E = fm\vartheta_k^2 \left[\frac{\eta_1 \omega}{6kT} + \frac{\eta_2}{c^2 \rho} \right]^{-1}, \tag{4}$$

gdzie: m - masa cieczy uderzającego strumienia,

- θ prędkość strumienia kumulatywnego,
- $\eta_1 i \eta_2$ współczynniki lepkości kinematycznej cieczy do i po implozji pęcherzyka,
 - ω współczynnik tarcia wewnętrznego molekuł cieczy,
 - k stała Boltzmanna,
 - T temperatura,
 - c prędkość bezwzględna dźwięku,
 - f współczynnik uwzględniający okoliczności do uderzenia pęcherzyka.

Oddziaływanie uderzeniowe skumulowanego strumienia cieczy na powierzchnię metalu części opływanej, prowadzi do jej odkształcenia plastycznego i zwiększenia jej twardości – zgniotu [7]. We wzmocnionych warstwach wierzchnich metalu poddawanych dalszemu oddziaływaniu uderzeniowemu skumulowanych strumieni cieczy w rezultacie zmęczenia powstają mikropęknięcia, których dalszy rozwój prowadzi do pojawienia się wżerów erozyjnych, w postaci kraterów. Na rysunku 1 przedstawiono schemat uszkadzania metalu wskutek skumulowanego oddziaływania strumienia [2].

Rys. 1. Schemat uszkadzania metalu w wyniku odziaływania erozji kawitacyjnej d _{max} – średnica maksymalna, odpowiadająca obszarowi powstawania pęknięć skupionych; d _k – średnica wżeru; d – średnica obszaru powstania produktów utlenienia; δ -głębokość niszczenia metalu

Uszkodzenie metalu następuje po osiągnięciu wartości krytycznych naprężeń, co jest charakterystycznym dla zniszczeń zmęczeniowych materiałów. Często dla zapobieżenia uszkodzeniom erozyjnym w literaturze technicznej proponowane są mało skuteczne metody podwyższenia twardości powierzchni podlegających erozji kawitacyjnej. Jednak w pracy [12] intensywność erozji kawitacyjnej określono zależnością:

$$J = const \cdot H^n \tag{5}$$

gdzie: J – intensywność zużycia erozyjnego (mg/mm² godz) metalu,

- zdetrminowana nie tylko jego odpornością na niszczenie erozyjne;
- H twardość powierzchni metalu (HB);
- n wykładnik o wartościach od 2,78 (dla stali węglowych) do 0 (dla stali stopowych chromu).

Wpływ początkowej twardości stali na intensywność erozji kawitacyjnej przedstawiono na rys. 2 [12, 13].

Erozyjne zniszczenia stali stopowej 03HG10-10 przy mniejszej twardości w porównaniu ze stalami wykorzystanymi w eksperymencie było znacznie mniejsze. Wynika z tego, iż dla zwiększenia odporności na erozję kawitacyjną powierzchnia metali musi być bardziej plastyczna. Zwiększenie odporności na erozję kawitacyjną powierzchni metali można osiągnąć poprzez:

- laminaryzację strumieni cieczy roboczej;

- pokrycie powierzchni metali powłokami ochronnymi;

- tłumienie drgań części/detalu przy kawitacji wibracyjnej.

Rys. 2. Intensywność erozji kawitacyjnej w zależności od początkowej twardości stali: 1– S40 i S1Cr40; Cr5V3; 2 – 1Cr13, 2Cr13, Mn20Si1; 3 – 1Cr18Ni3Mn4Cu2; 4 – 30Cr10Mn10

Laminarność strumieni cieczy jest związana z powstawaniem układów hydraulicznych, w których prędkości strumieni cieczy nie przekraczają wartości krytycznych,

odpowiadających granicznym wartościom kryterium Reynoldsa. Wartość krytyczną, ustalającą początek kawitacji określa związek matematyczny w postaci [2]:

$$K_k = \frac{K_k^0}{C_j^0} \left(C_j - \Delta C_j^* \right) \tag{6}$$

gdzie: K_k^0 i C_j^0 – liczba kawitacji i współczynnik oporu nie laminarnej warstwy przyściennej strumienia cieczy;

 ΔC_i^* – zależnie od struktury strumienia cieczy określa ją zależność:

$$\Delta C_j^* = \frac{1,33\left(1 - \frac{1}{e^F}\right)}{\sqrt{Re}} \tag{7}$$

gdzie: e^F - plastyczność graniczna powierzchni omywanego metalu cieczą [2].

Analiza wyrażeń (6-7) dla współczynnika oporu C_j^* wskazuje, że przy zmniejszeniu liczby kryterialnej Reynoldsa i zwiększaniu plastyczności omywanej powierzchni, opór warstwy wierzchniej wzrasta. Odpowiednio obniża się liczba kawitacji K_k , charakteryzująca warunki początku zjawisk kawitacyjnych i związanych z nimi uszkodzeń.

Biorąc pod uwagę że w początkowym momencie, w wyniku oddziaływania strumieni kumulacyjnych w warstwie wierzchniej metali powstaje zgniot, który w warunkach cyklicznych uderzeń niszczy się i pęka. Powstające mikropęknięcie są zarodkami głębokich wżerów przy powstającej wówczas korozji elektrochemicznej szczelinowej. W konsekwencji zniszczenie erozyjno-korozyjne można traktować jako proces zmęczeniowo-korozyjny. Tym samym można stwierdzić, że odporność metali na zniszczenie erozyjno-korozyjne w znacznym stopniu zależy od własności metalu, składu chemicznego i własności otaczającego środowiska.

Biorąc pod uwagę zmęczeniowy charakter erozyjnego niszczenia metali, który powstaje w wyniku odziaływań uderzających strumieni cieczy w momencie eksplozji kawitacyjnych pęcherzów parowo-gazowych, można wyciągnąć następujące wnioski. Utwardzanie warstwy powierzchniowej metalu i wynikający z tego zgniot, jak widać z rys. 1, jest początkowym stadium zniszczenia erozyjnego. Ponieważ w dalszym rozwoju procesu, w wyniku powstających naprężeń zmęczeniowych, utwardzona powierzchnia metalu ulega pękaniu, a następnie, powstaniu wżerów erozyjnych, gdy jednocześnie występują naprężenia zmęczeniowe i korozja szczelinowa. Wychodząc z tego, najskuteczniejszej metody zapobiegającej niszczeniu erozyjnemu powierzchni metali stosowanych w instalacjach hydraulicznych. Oczywiście głównym warunkiem zastosowania takich metali powinna być zdolność ich do nie tworzenia utwardzonych warstw powierzchniowych, to znaczy powinna być plastyczna.

2. Wybór obiektu badań

Rozważając zachowanie sprężystości pojedynczych kryształów metali konstrukcyjnych, należy wziąć pod uwagę anizotropię sprężystych modułów krystalicznych, pod kątem określenia różnic w odkształceniu sprężystym, gdy obciążenia są przykładane w różnych kierunkach krystalograficznych. Większość

metali krystalizuje się w trzech typach sieci: sieć przestrzennie centryczna, sieć płasko centryczna i sieć heksagonalna. Takie rodzaje siatek pokazano na rys.3. We wszystkich sieciach krystalicznych indeksy ścian kryształów oznaczono następująco: wzdłuż osi X jako [100]; osi Y - [010] i osi Z - [001]. Indeksy przekątnych ścian oznaczono jako: [110] na płaszczyźnie X-Y, [011] na płaszczyźnie Y-Z i [101] na płaszczyźnie X-Z. Przekątną przestrzenną oznaczono jako [111]. Do metali posiadających strukturę sieci krystalicznej, odpowiadającej sieci płasko centrycznej można zaliczyć żeliwo, stal i miedź, a do metali ze siecią heksagonalną – nikiel, cynk, aluminium i kadm. Ważną charakterystyką metali z punktu widzenia odporności erozyjnej jest ich plastyczność, na co wskazuje wyrażenie (7). W pracy [13] zauważono, że plastyczność metali z siecią heksagonalną jest większa niż metali z siecią płasko centryczną. Odkształcenie tych metali powstaje w postaci poślizgu wzdłuż płaszczyzny [001], co nie powoduje utwardzenia warstwy wierzchniej, a mianowicie: zgniotu. Odkształcenie metali z siecią płasko centryczną w płaszczyznach [111] i [112] przedstawia rysunek 4.

Porównanie tych wartości sugeruje, że nikiel i aluminium są bardziej plastyczne niż stal. Przykłady komórek gęsto upakowanych sieci krystalicznych ścian kryształów przedstawiono na rys. 3, a indeksy kierunków odkształceń komórek krystalograficznych i płaszczyzn ścinania pokazano na rys.4.

Rys. 3. Elementarne komórki gęsto upakowanych sieci krystalicznych: a – sieć przestrzennie centryczna; b – sieć płasko centryczna; c – sieć heksagonalna

Rys. 4. Krystalograficzne indeksy kierunków odkształceń (a) i płaszczyzn ścinania (b, c)

Rozpatrując właściwość plastyczności metali, wzięto pod uwagę wpływ kształtu ich elementarnych komórek sieci krystalicznych i rozmiar ich ziaren. W szczególności, wartość plastyczności G_{0,2} jest różna dla metali, w zależności od rodzaju ich sieci krystalicznej. W przypadku metali o objętościowej siatce krystalicznej (Fe, Cr, Mo, W), a zwłaszcza opartych na ich stopach, w normalnych warunkach występują tylko ułamki procenta. W przypadku metali z siecią płasko centryczną (Cu, Ni, Al, Ag), plastyczność ich może być ponad przecięna. W związku z tym, interesującym jest, zastosowanie w charakterze powłoki ochronnej przed uszkodzeniami erozyjnymi, metali o płasko centrycznej siatce krystalicznej. Oznacza to zastosowanie metali, w których nie powstają znacznie utwardzania warstwy powierzchniowej pod wpływem oddziaływań mikro uderzeniowych.

Wyróżniającym się z tego punktu widzenia materiałem jest nikiel i jego stopy. Nikiel jest bardzo plastycznym metalem, o dobrych własnościach mechanicznych. Stopy niklu: takie jak brązy i mosiądze niklowe, a także związki międzymetaliczne na bazie niklu i aluminium (Ni₃Al i NiAl) mogą być skutecznymi materiałami na powłoki ochronne powierzchni narażonych na kawitację w układach hydraulicznych maszyn przepływowych. Skuteczność chemicznego nakładania powłok niklowych na próbki żeliwa podano w pracach [1,16], gdzie w instalacji hydraulicznej stanowiska badawczego wyposażonego w wibrator magnetostrykcyjny, powierzchne próbek nie wykazały zniszczenia erozyjnego. Wyniki takich badań, wpływu zawartości niklu stali stopowych na odporność powłok ochronnych na erozję przedstawiono na rys. 5 [12].

 $\Psi-$ przewężenie względne.

3. Badania porównawcze odporności metali z różną strukturą sieci krystalograficznej i ich wyniki

Na podstawie analizy metod stosowanych w badaniach odporności metali na kawitacyjne zniszczenia erozyjne. [14,15], wybrano metodę kawitacji wentylacyjnej. Ponieważ erozja kawitacyjna jest rezultatem uderzeń mikrostrumieni cieczy po implozji pęcherzyków paro-gazowych, eksperyment przeprowadzono na stanowisku wibracyjnym, z zastosowaniem wody z instalacji miejskiej, jako czynnikiem roboczym.

Weryfikację hipotezy o zmęczeniowym charakterze uszkodzeń erozyjnych wykonano dla próbek z trzech metali, o różnych strukturach sieci krystalicznej: niklu 200/201, stopu niklu monel 400 i stali konstrukcyjnej C45 [5, 6, 7]. Skład chemiczny badanych próbek z niklu 200/201 i monelu 400 podano w tabelach 1 i 2.

	С	Si	Mn	S	Со	Cu	Fe	Mg	Ti	Ni	Ni-Co
	0,01	0,04	0,10	<0,01	<0,01	<0,01	<0,01	0,102	0,04	99,67	99,687
Max	0,02	0,15	0,35	0,005	1,0	0,15	0,25	0,15	0,10		
Min											99,6

Tabela1. Skład chemiczny próbek z niklem 200/201

Tabela 2. Skład chemiczny próbek z monelu 400

	С	Si	Mn	Sr	AI	Со	Cu	Fe	Mg	Ti	Ni	Ni-Co
	0,13	0,23	0,94	0,03	<0,01	0,04	32,6	2,06		0,02	63,9	64,007
Max	0,15	0,5	2,0	0,02	0,5	1,0	34,0	2,5		0,3		
Min							28,0	1,0			36,0	63,0

Powierzchnie próbek badanych metali szlifowano do chropowatości odpowiadającej 0,63 mkm, po czym określono twardość ich warstw wierzchnich metodą Vickersa

zgodne z normą PN-EN ISO 6507-1:2000. Wyniki pomiarów jako średnie z sześciu pomiarów, przedstawiono w tabel 3.

Badania przeprowadzono zgodne z normą ASTM G32, w wersji z nieruchomą próbką, w trzech seriach: przez 10 minut odziaływania strumieni na próbki, 30 minut i 60 minut oddziaływania. Po każdej serii próbki ważono na wadze analitycznej. Pomiary ubytku masy próbek dały możliwość określenia prędkości zużycia erozyjnego metali zastosowanych w eksperymencie. Wyniki badań przedstawiono w tabeli 3 i graficznie na rysunku 6.

		Nikel			Monel		Stal C45			
Masa (g)	Próbka 1	Próbka 2	Próbka 3	Próbka 1	Próbka 2	Próbka 3	Próbka 1	Próbka 2	Próbka 3	
Masa do badań	9,0722	9,1200	8,8327	8,3740	9,7898	9,4627	8,7153	7,9301	7,8240	
Masa po 10 min. ekspozycji	9,0722	9,1200	8,8327	8,3739	9,7897	9,4626	8,7150	7,9298	7,8238	
Masa po 30 min. ekspozycji	9,072	9,1200	8,8327	8,3738	9,7896	9,4624	8,7147	7,9296	7,8235	
Masa po 60 min. ekspozycji	9,0717	9,1199	8,8325	8,3736	9,7894	9,4623	8,7140	7,9292	7,8231	
Twardość próbek do badań (metoda) Vickersa	95,8	98,3	112,3	125,0	123,4	125,5	155,6	138,5	126,0	
Ubytek masy próbek w trakcie badań	0,0005	0,0001	0,0002	0,0004	0,0003	0,0013	0,0013	0,0009	0,0009	
Średni ubytek metalu		0,00027		0,0007			0,001			
Prędkość zużycia po 10 min. ekspozycji (g/godz)		0		0,0018			0,0016			
Prędkość zużycia po 30 min. ekspozycji (g/godz)		0		0,0014			0,00106			
Prędkość zużycia po 60 min. ekspozycji (g/godz)		0,00027		0,0007			0,001			

Tabela 3. Wyniki badań próbek metalowych na stanowisku wibracyjnym

Rys.6. Prędkość zużycia erozyjnego metali w eksperymencie Gdzie: seria 1 odpowiada 10 min. ekspozycji badań; seria 2 – 30 min. i seria 3 – 60 min.

4. Podsumowanie

Konfrontując wyniki badań można zauważyć, że najmniejszą odporność na zużycie erozyjne ma stal C45, której prędkość zużycia przekracza prędkość zużycia niklu 200/201 trzydzieści siedem razy. Monel 400 osiąga wartości pośrednie. Fakt ten, jest potwierdzeniem przyjętej hipotezy o skuteczności zastosowania metali plastycznych dla zapobiegania zniszczeniom erozyjny w instalacjach wodnych, podatnych na kawitację. Drugim potwierdzeniem tej hipotezy jest zmniejszenie prędkości zużycia stali C45 i monelu 400 z wzrostem czasu eksperymentu (rys. 6). Jest to skutek zwiększenia twardości warstwy wierzchnich próbek i powstawania zgniotu.

Podsumowując przeprowadzone badania można stwierdzić, że zapobieganie i spowalnianie zużycia erozyjnego powierzchni roboczych elementów maszyn przepływowych może być realizowane poprzez zastosowanie metali plastycznych do ich wytwarzania.

REFERENCES

- Adamkiewicz A., Waliszyn A.: Discussion and studies of the properties of a cooling water additive preventing erosive wear of cooled surfaces of ship diesel engines. Eksploatacja i Niezawodność-Maintenance and Reliability, 10/2014, Vol 1,s.565-570, ISSN 1507-2711.
- 2. Adamkiewicz A., Waliszyn A.: Studies of erosion resistance of protective coats on the surfaces of machine elements washed with fluids. Advances in Ma terials Science 6/2018, s. 69-76, ISSN 1730-2439.
- 3. Amann T., Waidele M., Kailer A., Analysis of mechanical and chemical mechanisms on cavitation erosioncorrosion of steels in salt water using electrochemical

methods, TRIBOLOGY INTERNATIONAL, 2018, Vol. 124: 238-246, DOI: 10.1016/j. triboint.

- Bolewski Ł., Szkodo M., Kmieć M., Cavitation erosion degradation of Belzona® coatings, Advances in Materials Science, 2017, Vol. 17 (1), DOI: 10.1515/adms-2017-0002.
- Ciubotariu, CR., Secosan E., Marginean, G., Frunzaverde D., Campian V. C., Experimental Study Regarding the Cavitation and Corrosion Resistance of Stellite 6 and Self-Fluxing Remelted Coatings, STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2016, Vol. 62 (3): 154-162, DOI: 10.5545/svjme.2015.2663.
- 6. Heathcock C.J., Protheroe B.E., Ball A.: Cavitation erosion of stainless steels. Wear, 81(2) (1982) 311-327.
- Kim J H, Lee M H., A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying, JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2010, Vol. 19 (6): 1224-1230, DOI: 10.1007/s11666-010-9521-0.
- 8. Krella A., Cavitation degradation model of hard thin PVD coatings, Advances in Materials Science, 2010, Vol. 10 (3): 27–36, DOI: 10.2478/v10077-010-0010-4
- Kumar, H., Chittosiya, C., Shukla, V.N.: HVOF Sprayed WC Based Cermet Coating for Mitigation of Cavitation, Erosion & Abrasion in Hydro Turbine Blade, MATERIALS TODAY-PROCEEDINGS, 2018, Vol. 5 (2): 6413-6420.
- Krumenacker, L., Fortes-Patella, R., Archer, A., Numerical estimation of cavitation intensity, IOP Conference Series-Earth and Environmental Science, 2014, Vol. 22, Article Number: UNSP 052014, DOI: 10.1088/1755-1315/22/5/052014.
- Kwok C. T., Man H. C., Cheng F. T.: Cavitation erosion and damage mechanisms of alloys with duplex structures. Materials Science and Engineering A242 (1998) 108-120.
- 12. Steller J., Krella A., Koronowicz J., Janicki W.: Towards quantitative assessment of material resistance to cavitation erosion. Wear, 258 (2005) 604–613.
- Waliszyn A., Adamkiewicz A.: A metod of vibration damping for diesel engeene cylinder lines to prevent the consequences of erosion. Eksploatacja I Niezawodność
 Maintenance and Reliability, 2018, Vol. 20, s. 371-377, ISSN 1507-2711.
- Yang D., Yu A., Ji B., Zhou, J., Luo X., Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods, JOURNAL OF HYDRODYNAMICS, 2018, Vol. 30 (2): 345-356, DOI: 10.1007/s42241-018-0032-7.
- Yu A., Luo X., Ji B., Analysis of ventilated cavitation around a cylinder vehicle with nature cavitation using a new simulation method, SCIENCE BULLETIN, 2015, Vol. 60 (21): 1833-1839, DOI: 10.1007/s11434-015-0916-7.