PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Trajectory planning for kinematically redundant robots using jacobi matrix – an industrial implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The widespread use of robots in industry contributes significantly to high productivity. Serial 6-axis robots are used in large quantities, e.g. for assembly or welding. A current emerging trend is the use of robots for classic tasks of a machine tool like finishing of milled workpieces. For such applications, standard robots are usually extended by additional axes like linear axes or rotary tilting tables. Therefore, the overall system becomes kinematically redundant. To be able to calculate the axis quantities via inverse kinematics for a given path, additional degrees of freedom must be bound. In order to automatically and optimally consider the additional axis motion a method, using the pseudoinverse of the Jacobian matrix, is discussed. Due to the dependence of the Jacobi matrix on the robot's current joint position, numerical inaccuracies, which in turn reflect a path error, are inherent to this method. By feedback control of the path error, in the form of a classic control loop, the error can be reduced so that a practical implementation on industrial robot controller is possible. In the article possibilities for parameterisation of the algorithm as well as proof of stability of the closed loop are presented. The results obtained are verified by a concrete application.
Rocznik
Strony
24--35
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Chemnitz University of Technology, Faculty of Mechanical Engineering, Professorship for Machine Tools and Forming Technology, Germany
autor
  • Chemnitz University of Technology, Faculty of Mechanical Engineering, Professorship for Machine Tools and Forming Technology, Germany
autor
  • Chemnitz University of Technology, Faculty of Mechanical Engineering, Professorship for Machine Tools and Forming Technology, Germany
  • Chemnitz University of Technology, Faculty of Mechanical Engineering, Professorship for Machine Tools and Forming Technology, Germany
Bibliografia
  • [1] DENKENA B., BRÜNING J., LEPPER T., 2015, Innovative Zerspanung mit Industrierobotern Qualitäts- und Produktivitätssteigerung mittels ganzheitlicher Prozessbetrachtung, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 2015 (09).
  • [2] BORRMANN C., 2016, Adaptive Montageprozesse für CFK-Großstrukturen mittels Offline-Programmierung von Industrierobotern, Dissertation, TU Hamburg-Harburg, Hamburg.
  • [3] KIEF H.B., ROSCHIWAL H.A., 2015, CNC-Handbuch 2015/16, München, Hanser, 766.
  • [4] RÖSCH O., 2014, Steigerung der Arbeitsgenauigkeit bei der Fräsbearbeitung metallischer Werkstoffe mit Industrierobotern, Dissertation, TU München.
  • [5] SCHNEIDER U., DRUST M., ANSALONI M., LEHMANN C., PELLICCIARI M., LEALI F., GUNNINK J. W., VERL A., 2016, Improving robotic machining accuracy through experimental error investigation and modular compensation, The International Journal of Advanced Manufacturing Technology, 85/1-4, 3-15.
  • [6] Kuka Roboter GmbH, Lineareinheit KL 3000, http://www.kuka-robotics.com/germany/de/products/addons/ linearunits/PA_KL3000_Detail.htm (as consulted on-line on 22.12.2016).
  • [7] CHIACCHIO P., CHIAVERINI S., SCIAVICCO L., SICILIANO B., 1991, Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. In: Int. J. Rob. Res. 10, July, 4, 410-425.
  • [8] CONKUR, E.S., BUCKINGHAM, R., 1997, Clarifying the definition of redundancy as used in robotics, Robotica 15, 583-586.
  • [9] HARTENBERG R.S., DENAVIT J., 1964, Kinematic synthesis of linkages, McGraw-Hill, New York, 435.
  • [10] PIEPER D.L., 1968, The kinematics of manipulators under computer control, Stanford University, dissertation, http://www.dtic.mil/dtic/tr/fulltext/u2/680036.pdf, online-resource p. 174 (downloaded on 11.01.2016).
  • [11] MOORE E.H., 1920, On the reciprocal of the general algebraic matrix, Bulletin of the American Mathematical Society, 26, 394-395.
  • [12] PENROSE R., 1955, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society, 51, 406-413.
  • [13] MOHAN C., DEEP K., 2009, Optimization Techniques, Tunbridge Wells, New Age Science Limited.
  • [14] HIPP, K., HELLMICH, A., SCHLEGEL, H., DROSSEL, W.-G., 2014, June, Criteria for controller parameterization in the frequency domain by simulation based optimization, 14th Mechatronics Forum International Conference, Karlstad, Sweden.
  • [15] LYAPUNOV A.M., 1995, The general problem of the stability of motion, Automatica, 3/2, 353-356, London, ISBN 978-0-7484-0062-1.
  • [16] SCIAVICCO L., SICILIANO B., 2005, Modelling and control of robot manipulators, Advanced Textbooks in Control and Signal Processing, 2 ed., Springer, XXIII, 378.
  • [17] WALTHER M., HAMM C., HIPP K., NEUGEBAUER R., TAUCHMANN S., 2014, Optimale Ausnutzung von Achsredundanzen bei der Bahnplanung von Robotern, SPS/IPC/DRIVES, Nürnberg, VDE Verlag GmbH.
  • [18] WALTHER M., HIPP K., SCHLEGEL H., NEUGEBAUER R., 2015, Jacobi-Matrix basierte Bahnplanung für Roboter mit Achsredundanzen, Scientific Reports, Journal of the University of Applied Sciences Mittweida, 2, ISSN 1437-7624.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d07c676-cb0c-4927-964c-820928ac7e16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.