PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topologies on product and coproduct Frölicher spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the topologies underlying a product Frölicher space and a coproduct Frölicher space are defined and compared. It is shown that the product topology, which is equal to the one induced by structure functions, is the weakest one in which all projections are continuous. On the other hand, it is proved that the three topologies arising from the coproduct structure are equal.
Wydawca
Rocznik
Strony
1012--1024
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Mathematical, Sciences University of South Africa, Po Box 392, Unisa 003, South Africa
  • School of Mathematics, University of The Witwatersrand (WITS) 1, Jan Smuts Avenue, Braamfontein, Johannesburg Private Bag 3, Wits 2050, Johannesburg, South Africa
Bibliografia
  • [1] A. Arkangel'skii, L. Pontryagin, General Topology I, Springer-Verlag, Berlin, 1990.
  • [2] A. Batubenge, Symplectic Frölicher spaces of constant dimension, PhD Thesis, University of Cape Town, Cape Town, 2005.
  • [3] A. Batubenge, H. Tshilombo, Topologies and smooth maps on initial and final objects in the category of Frölicher spaces, Demonstratio Math. 42 (2009), 641–655.
  • [4] J. Boman, Differentiability of a function and its composition with functions of one variable, Math. Scand. 20 (1967), 249–268.
  • [5] G. Brummer, Topological categories, Topology Appl. 18 (2009), 27–41.
  • [6] A. Cap, K-theory for convenient algebras, Thesis, 1993.
  • [7] P. Cherenack, Applications of Frölicher spaces to cosmology, Ann. Univ. Sci. Budapest. 41 (1998), 63–91.
  • [8] P. Cherenack, Frölicher versus differential spaces: a prelude to cosmology, Papers in honour of Bernhard Banaschewski, 2000 Kluwer Academic Publishers, The Netherlands, 1998, 63–91.
  • [9] P. Cherenack, Smooth homotopy, Bolyai Soc. Math. Stud.: Topology with Applications, Szekszárd 4 (1993), 47–70.
  • [10] P. Cherenack, P. Multarzynski, Smooth exponential objects and smooth distributions, Zeszyty Nauk. 8 (2002), 33–52.
  • [11] B. Dugmore, A framework for homotopy theory and differential geometry in the category of Frölicher spaces, PhD Thesis, University of Cape Town, Cape Town, 1999.
  • [12] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  • [13] A. Frölicher, Catégories cartésiennement fermées engendrées par les monoides, Cahiers Topologie Géom. Différentielle Catégoriques 12(4) (1980), 367–375.
  • [14] A. Frölicher, Smooth Structures, Category Theory, Gummersbach, 1981, Lecture Notes in Math., 962, Springer, Berlin-New York, 1982, 69–81.
  • [15] A. Frölicher, Cartesian closed categories and analysis of smooth maps, Proceedings of the Workshop on Categories and Foundation of Continuum Physics, Buffalo, May, 17–21, 1982.
  • [16] A. Frölicher, Applications lisses entre espaces et variétés de Fréchet, C. R. Acad. Sci. Paris 293(1) (1981), 125–127.
  • [17] A. Frölicher, A. Kriegl, Linear Spaces and Differentiation Theory, Wiley and Sons, 1988.
  • [18] A. Frölicher, A. Kriegl, Topology and Differentiation Theory, Recent Progress in General Topology, Elsevier, 1992.
  • [19] A. Kriel, P. W. Michor, The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, Volume 53, American Mathematical Society, 1997.
  • [20] F. W. Lawvere, S. H. Schanuel, W. R. Zame, On C8-functions, Preprint, State Univ. of New York, Buffalo, 1981.
  • [21] S. MacLane,Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
  • [22] P. Ntumba, A. Batubenge, On the way to Frölicher Lie groups, Quaestiones Math. 28 (2005), 73–74.
  • [23] W. Sasin, Z. Zekanowski, On locally finitely generated differential spaces, Demonstratio Math. 20 (1987), 477–487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d04e279-4fcd-4458-8331-768250a0c163
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.